
Department of Computer Science
Series of Publications A

Report A-2013-13

Self-Organizing Software Architectures

Pietu Pohjalainen

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XV, University Main Building, on 13th December 2013, at noon.

University of Helsinki
Finland

Supervisors
Jukka Paakki, University of Helsinki, Finland
Juha Taina, University of Helsinki, Finland

Pre-examiners
Görel Hedin, Lund University, Sweden
Jyrki Nummenmaa, University of Tampere, Finland

Opponent
Kai Koskimies, Tampere University of Technology, Finland

Custos
Jukka Paakki, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright © 2013 Pietu Pohjalainen
ISSN 1238-8645
ISBN 978-952-10-9424-8 (paperback)
ISBN 978-952-10-9425-5 (PDF)
Computing Reviews (1998) Classification: D.2.11, D.1.2, D1.5, D.2.2,
D.2.3, D.2.7, D.2.13
Helsinki 2013
Unigrafia

Self-Organizing Software Architectures

Pietu Pohjalainen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
pietu.pohjalainen@iki.fi

PhD Thesis, Series of Publications A, Report A-2013-13
Helsinki, December 2013, 114 + 71 pages
ISSN 1238-8645
ISBN 978-952-10-9424-8 (paperback)
ISBN 978-952-10-9425-5 (PDF)

Abstract

Looking at engineering productivity is a source for improving the state of
software engineering. We present two approaches to improve productivity:
bottom-up modeling and self-configuring software components. Produc-
tivity, as measured in the ability to produce correctly working software
features using limited resources is improved by performing less wasteful ac-
tivities and by concentrating on the required activities to build sustainable
software development organizations.

Bottom-up modeling is a way to combine improved productivity with agile
software engineering. Instead of focusing on tools and up-front planning,
the models used emerge, as the requirements to the product are unveiled
during a project. The idea is to build the modeling formalisms strong
enough to be employed in code generation and as runtime models. This
brings the benefits of model-driven engineering to agile projects, where the
benefits have been rare.

Self-configuring components are a development of bottom-up modeling.
The notion of a source model is extended to incorporate the software enti-
ties themselves. Using computational reflection and introspection, depen-
dent components of the software can be automatically updated to reflect
changes in the dependence. This improves maintainability, thus making
software changes faster.

The thesis contains a number of case studies explaining the ways of applying

iii

iv

the presented techniques. In addition to constructing the case studies, an
empirical validation with test subjects is presented to show the usefulness
of the techniques.

Computing Reviews (1998) Categories and Subject
Descriptors:
D.2.11 Software Architectures
D.1.2 Automatic Programming
D.1.5 Object-oriented Programming
D.2.2 Design Tools and Techniques
D.2.3 Coding Tools and Techniques
D.2.7 Distribution, Maintenance, and Enhancement
D.2.13 Reusable Software

General Terms:
Design, Economics, Experimentation, Reliability

Additional Key Words and Phrases:
engineering productivity, software maintenance, self-configuring
components, bottom-up modeling, generative programming,
domain-specific languages

Acknowledgements

This work would not have been possible without the support from many
people at the university, industry and in private life. First I would like
to thank Department of Computer Science, University of Helsinki for pro-
viding the environment for completing this thesis and Graduate School on
Software Systems and Engineering for providing financial support for at-
tending to a number of scientific workshops and conferences. On personal
level, I would like to thank late professor Inkeri Verkamo for accepting me
as a doctoral student regardless the unrealistic study plans. Dr. Juha Taina
helped a lot when translating my fuzzy ideas into formal, scientific text.
Professor Jukka Paakki aided this text to gain its final form. I would also
like to express my gratitude to Ph.Lic Juha Vihavainen for teaching me the
internals of compilers and MA Marina Kurtén for helping with the English
language, often within tight deadlines.

Much of this work was done in context of industrial collaboration. For
this reason, I would like to thank the companies involved, Digital Chocolate
and Comptel Oyj. You have helped me to gain confidence that the things I
am working on have significance also outside the academia. I would also like
to thank people at National Institute for Health and Welfare for providing
room for finishing this thesis. Additionally, I would like to thank Apple
for making easy-to-use backup systems installed on their computers. Only
three Apple-branded computers were destructed during preparation of this
thesis.

Finally, I would like to thank my three girls, Eeva, Armi and Asta for
giving me alternative ways of spending my time.

Helsinki, November 11th 2013
Pietu Pohjalainen

v

vi

Contents

1 Introduction 1
1.1 Summaries of original publications 3

1.1.1 Paper (I) . 3
1.1.2 Paper (II) . 3
1.1.3 Paper (III) . 3
1.1.4 Paper (IV) . 4
1.1.5 Paper (V) . 4
1.1.6 Paper (VI) . 5

1.2 Thesis contributions . 5
1.3 Thesis organization . 7

2 Preliminaries 9
2.1 Software engineering . 9
2.2 Agile software engineering 12
2.3 Non-functional requirements 14
2.4 Productivity in software engineering 19
2.5 Economic model for investing in software development process 25
2.6 Recovering from the paradox 31

3 Software architectures, models and product lines 33
3.1 Software architectures . 34
3.2 Model-driven software engineering 35
3.3 Modeling in agile software process 41
3.4 Software product lines . 42
3.5 Self-organizing and self-configuring software architectures . 49

4 Bottom-up modeling 53
4.1 Problems of top-down model engineering 53
4.2 Bottom-up model-driven engineering 54
4.3 An example . 56
4.4 When to use bottom-up modeling 63

vii

viii Contents

4.5 Related work . 64

5 Programs as models 67
5.1 Metaprogramming and generative programming 67
5.2 Program annotations . 70
5.3 Program fragments as the source models 72
5.4 Related work . 78

6 Conclusions 87
6.1 Contributions of the thesis 87
6.2 Limitations of the thesis . 89
6.3 Future directions of research 89

References 93

Reprints of the original articles 115

Contents ix

Original publications

This thesis consists of the following peer-reviewed publications and an intro-
duction reviewing the area of study. In the thesis, the included publications
are referred to by their Roman numerals.

I P. Pohjalainen: Restructuring optimizations for object-oriented mobile
applications. Proceedings of Workshop on New Horizons in Compiler
Analysis and Optimizations, Bangalore, India (2004).

II P. Pohjalainen: Object-Oriented Language Processing, Proceedings of
7th Joint Modular Languages Conference, Oxford, UK (2006).

III P. Pohjalainen: Bottom-up modeling for a software product line: An
experience report on agile modeling of governmental mobile networks.
Proceedings of 15th Software Product Lines Conference, Münich, Ger-
many (2011).

IV P. Pohjalainen: Self-configuring user interface components. Proceed-
ings of 1st workshop on Semantic Models for Adaptive Interactive Sys-
tems, Hong Kong, China (2010).

V P. Pohjalainen, J. Taina: Self-configuring object-to-relational mapping
queries, Proceedings of 6th International Symposium of Principles and
Practice of Programming in Java, Modena, Italy (2008).

VI P. Pohjalainen: Transparent persistency seems problematic for soft-
ware maintenance - A randomized, controlled experiment. Proceedings
of 8th International Conference on Evaluation of Novel Approaches to
Software Engineering, Angers, France (2013).

In paper (V), J. Taina supported in formalization of the query inference
system’s description. The actual implementation was done by the author.

x Contents

Chapter 1

Introduction

Improving productivity is an everlasting quest in software engineering. Be-
ing able to produce better software faster means opportunities to gain more
profits for businesses, and to be able to serve customers better even when
no commercial interest is in place, such as in governmental organizations.
In the past, this target has been approached in many ways, such as via
development of different software process models, improving managerial
productivity, or by developments of e.g. better programming languages
and development environments, targeting programmer productivity.

Developments in programming languages have not improved productiv-
ity much. The current mainstream of programming languages, such as Java
[GJSB05] and C# [Mic07], have not been able to improve productivity in
order of magnitudes over older languages [BH12, McC04, p. 62]. According
to research, the way of using programming tools contributes more to pro-
ductivity than the tool itself. Actually, it seems that software architecture
is the driving force to alter productivity: well-suiting architecture is a boon
for productivity while an ill-suited architecture results in a major decline
in productivity due to the required rework effort [TLB+09]. Empirically,
one study found the average team size to be the most important factor
when determining variance in productivity and the architecture used to be
the second in importance - while the programming language explains only
one third of the variance compared to the architecture used [TMY+09]. As
another example, the architecture of a given system, programmed in Java,
can be monolithic or composed from modular pieces using a service-oriented
architecture. In large systems, the service-oriented architecture can be a
great boost for productivity [Jon08, p. 220]. These reasons give us the
foundation to study software architectures in relation to software engineer-
ing productivity. Overall, there are two main reasons to study better ways
of organizing software architecture:

1

2 1 Introduction

1. Improved productivity enables cost savings and advantage in time-
to-market.

2. Due to the specific nature of each software case, there is always room
for improvement.

Reason number #1 deals with the competitive nature of the software
market: unfit companies will be driven out of the market. Reason #2
gives the inductive clause for development: since there is always room for
development, not seizing these opportunities makes the company risk losing
its fitness. For these reasons, we need to broadly chase all techniques that
take us further.

This thesis aims to improve engineering productivity by focusing on
programmer productivity. The overall theme is characterized by the self-
organization of software architecture on various levels. We describe various
model-based approaches that we have employed in real industrial projects
with real world constrains being applied. In many cases, we use advanced
programming techniques, such as generative programming to achieve our
target. We explore the traditional model-based engineering and combine
those with program analysis techniques, producing a novel combination.
In this thesis, we show that using the program under development as the
source model can benefit the programmer in ways of improved type safety,
reduced effects of internal dependencies, and improved module compos-
ability. These self-configuring components become architectural elements
of the software. In this thesis, these properties are examples of approaches
for making it easier to ship correctly working software in a shorter time
period.

We propose a new way to combine model-driven development and gen-
erative programming. To increase industrial relevance, our solution takes
the limitations of agile development models into account. Our treatment
stems both from industrial experience and academic discussion of software
development techniques. Although our goal is not to improve software
engineering at the level of engineering processes or engineering team com-
position, all our proposed engineering techniques can be and have been
implemented in current agile industrial environments.

The techniques are presented in a form that describes specific problems
in specific programming environments. Our solutions of using specific tools
and techniques in specific contexts can be seen as examples or larger appli-
cability in other contexts and using other tools. This is a way to demon-
strate the wide applicability of our proposition of building long-lasting soft-
ware systems via introduction of self-organizing software components.

1.1 Summaries of original publications 3

1.1 Summaries of original publications

In this section, we describe the included publications and show how they
are related to the subject of the thesis.

1.1.1 Paper (I)

In paper (I) we describe a technique for building a software product line
of mobile games for resource-constrained cell phones. In this context, the
usual programming techniques, such as interfaces and abstract classes for
building modular software architecture are problematic due to the extra
overhead introduced by these classes. For this reason, many organizations
in the industry have abandoned object-oriented programming practices. In
this paper, we present an algorithm for reducing the architectural overhead
of interface classes and abstract classes by removing those architectural
classes that are used due to software product line derivation. This way,
the company does not need to compromise between maintainability of its
product line and single product resource consumption.

1.1.2 Paper (II)

Paper (II) discusses how a language processor can be implemented incre-
mentally using a generative approach. The main contribution is an object-
oriented construction, which allows parsing of object-oriented context-free
grammars within object constructors, despite the fact that in most object-
oriented languages the object constructor is not polymorphic. We present
an incrementally extensible parser generator, which employs a variant of the
Visitor pattern to improve the error messages produced by a strongly typed
implementation language in case of incompatible changes to the processed
grammar.

The paper can be seen as a traditional example of model-based gen-
erative programming. A parser generator, which uses a grammar as its
input, generates a part of the program. For language processing, actions
for grammar productions can be hooked to the generator. This structure
avoids the inherent problems of generative programming, where it is diffi-
cult to interweave generated and handcrafted software parts.

1.1.3 Paper (III)

In paper (III), we document a case of building support for validating soft-
ware product line instances. We approach the problem by re-using a well-
known computational abstraction, regular expressions, to build a model

4 1 Introduction

in a known analysis technique of feature-oriented domain analysis. We
document application of a textual language as the source model and its
implications in the context of an industrial software product line in the
telecommunication provisioning domain.

Here we present a theoretical bridge from regular expressions to feature
modeling. As a practical report, we also survey the model evolution that
was experienced during development of a case study software product line.

1.1.4 Paper (IV)

In paper (IV) we explore the idea of using executable code as the model
in a model-based software engineering technique. In an industrial project,
we had identified a problem of copy-paste coding in connection with Java’s
standard component-based user interface building technology. In the paper,
we present a tool for reducing internal dependencies in architectures using
the standard Java web development stack.

The resulting self-configuring component allows developers to build web
applications with fewer dependencies and improved support of producing
more precise messages to be shown to the user. This technique is use-
ful when considering the maintenance tasks of the software, as possible
changes to the user interface layer are automatically reflected in its depen-
dent behavior. The automatic reconfigurations are also useful in the case
of product lines, where behavior changes based on the chosen configuration
variant.

1.1.5 Paper (V)

Paper (V) presents another example case of using software code as the
model for model-based software development. When using an object-to-
relational mapping software component, a common problem is the depen-
dency between a data-processing algorithm and its corresponding database
query code. In this paper, we present a self-organizing database query
component that analyzes properties of the algorithm and constructs the
corresponding database query. This way, should the algorithm change, the
fetching code is automatically updated as well.

Another benefit of this approach is that the need for re-defining the
database queries is reduced, since the automated query constructor com-
ponent can analyze and create corresponding queries for multiple processing
sites.

1.2 Thesis contributions 5

1.1.6 Paper (VI)

In paper (VI) we document the results of a randomized, controlled ex-
periment of performing maintenance tasks using the technique presented in
paper (V). We assigned base software with a list of seven development tasks
to randomly divided groups of students. The first group’s base software was
implemented by using the traditional object-to-relational mapping imple-
mentation. The second group’s software used the technique presented in
paper (V).

We used the number of correctly implemented maintenance tasks as
the measure of success. The result of the experiment shows that using
the self-organizing database queries resulted in a statistically significant
difference between the groups with respect to code quality, as the members
of the second group produced 22 correct submissions while the control group
members were able to return only 5 correct submissions. Since the time
consumed during the experiment did not vary between the two groups, it is
evident that being able to produce four times as many correct submissions
in the same amount of time is a great boon for productivity.

1.2 Thesis contributions

The papers introduced in the previous section are manifestations of our ap-
proach of building long-lasting software in practical settings. We have for-
mulated our proposition to fit constraints mandated by e.g. agile software
processes, since all the tools and techniques for productivity improvement
can be and have been implemented in a sprintable form.

Model-driven engineering is a recent movement with a promise for im-
proved productivity. Productivity gains in limited domains, such as com-
piler construction make the idea of raising the level of abstraction appealing.
However, combining agile process with engineering approaches that include
any significant investment, or up-front planning, before the engineering dis-
cipline can be employed can turn out to be problematic. Examples of this
have been discovered when combining agile processes with product-line en-
gineering [McG08] and requirements engineering [PEM03], and when ap-
plying architectural thinking with agile projects [ABK10, Mad10].

To fix these problems, we propose a flavor of model-driven engineering
that takes into account the restrictions imposed by agile software devel-
opment process models. This approach of bottom-up agile model-driven
development recognizes smaller sub-domains within the software that are
amenable for lightweight modeling. These small models can be used in
traditional source-to-target generative programming or in some cases the

6 1 Introduction

source code itself can be treated as the source model, thus reducing redun-
dancy. The bottom-up modeling approach entails lighter initial investment
than domain-specific modeling, and thus allows fast experimentation cycles
within the limits of tightly time-boxed agile iterations.

We pay special attention to self-configuring software components. A
self-configuring software component contains instructions for placing the
component in question into different contexts. The component knows how
to adapt its parameters, up to a certain degree, when the context it is
residing in changes. The central idea is to reduce the harmful effects of
internal dependencies, making it easier to maintain and further develop the
software. When the architecture of a software utilizes such self-configuring
components, the architecture can be said to be self-organizing.

Large software systems are full of interdependencies between modules
and other elements. For example, when using arrays as storage for holding
objects, the size of the array must be large enough. This is a dependency
between the size of the array and the number of elements placed in the
array. A self-configuring array analyzes its usage sites and automatically
determines the required size. This way, if the usage pattern changes due
to software evolution or for other reasons, the size of the created array is
automatically updated to reflect the changed reality. This kind of configu-
ration cannot always be done automatically - the problem is unsolvable in
the general case. However, in many cases it is possible to automate the up-
dating of dependencies, by using well-known software analysis techniques
such as control flow graphs, variable def-use chains, class hierarchies, and
other data structures that the compiler of a programming language already
uses during its compilation task. Currently the results of these analyses are
typically contained only within the compiler internals and are not available
for application developers.

A self-configuring software component modularizes these kinds of anal-
ysis tools and makes it possible to employ existing information to better
benefit in improving software maintainability, improve software architec-
ture’s support for implementing features and optimize established software
product lines.

Our proposed techniques have long been used within homoiconic pro-
gramming environments. Generative programming is a common practice in
many software products using functional languages as their implementation
tool. Our results propose that many of these techniques are applicable in
a non-homoiconic environment as well.

Our concrete contributions include a number of tools for generating
and optimizing architectural and code-level decisions in various domains,

1.3 Thesis organization 7

namely the following:

• An optimizing compiler for the Java programming language that re-
moves unnecessary abstract classes and interface classes, as docu-
mented in paper (I).

• A top-down parser generator for object-oriented context-free gram-
mars using object constructors, which was previously believed to be
impossible. As a side-product, we present software architecture for
building extensible semantic processors for these parsers in paper (II).

• A fast technique for comparing feature models by reducing the com-
pared models to regular expressions, as presented in an industrial
context in paper (III).

• Two cases of using self-organizing software components in different
non-homoiconic domains, as presented in papers (IV) and (V).

• An empirical validation of the tool presented in paper (V) is con-
ducted in paper (VI).

Overall, the contribution of the thesis can be summarized as show-
ing meta-programming and generative programming as viable vehicles for
model-based self-organization of software systems, and showing that the
approach is profitable in an industrial setting.

1.3 Thesis organization

We present a number of case studies in different contexts and their im-
posed constraints. In these cases we show how meta-programming, self-
organization and generative programming can be used to improve the soft-
ware engineering process and to produce better software that is easier to
modify according to changing needs. Industrial experience is present in all
cases; however, in some papers the industry-specific parts have been faded
away in order to demonstrate wider applicability. Types of employed mod-
els vary between traditional, external models (such as UML) and internal
models, where the program source code is used to self-configure another
part of the program.

As a more specific list of thesis organization, we list the collection of
papers under the following topics:

1. Industrial experience (IE) - whether the contribution of the paper has
been applied in industrial context explicitly (exp), implicitly (impl)
or not at all (none).

8 1 Introduction

2. Empirical evaluation (EE) - whether the paper contains empirical
evaluation; one star for a case study; two stars for industrial practice
documentation; three stars for a randomized, controlled experiment.

3. Type of models (ToM) - whether the paper documents usage of ex-
ternal models (ext) or internal models (int)

4. Generative programming (GP) - whether the technique presented in
the paper employs generative programming

IE EE ToM GP

Paper (I) exp ** int x
Paper (II) impl * ext x
Paper (III) exp ** ext x
Paper (IV) impl * int x
Paper (V) impl * int x
Paper (VI) none *** int x

This thesis consists of the peer-reviewed publications and an introduc-
tory part. The introductory part is organized as follows. Chapter 2 explores
the area of software engineering by first defining the concepts of software
and productivity. Chapter 3 continues with a review of existing literature
on related programming techniques of metaprogramming, literate program-
ming and model-driven software development. Chapter 4 reviews the role
of bottom-up modeling, as opposed to the traditional top-down modeling.
Chapter 5 introduces the idea of using the program itself as the source
and target models for model transformations. Chapter 6 concludes the in-
troduction and discusses new research topics revealed in this thesis. The
included publications follow the introductory part.

Chapter 2

Preliminaries

This chapter contains the required understanding of the background of
this thesis. The preliminaries concentrate on various aspects of software
engineering: agile engineering processes, non-functional requirements, pro-
ductivity and the paradox of process improvement in an agile process. The
rest of the thesis operates in the light cast in this chapter: we concentrate
on the problems identified in this chapter.

The chosen viewpoints do not try to cover the full range of activities
being done in software projects. Instead, these viewpoints are chosen for
discussion because they tend to be sources of hard-to-fix problems for many
software projects.

Section 2.1 discusses the general state of software engineering. Sec-
tion 2.2 extends the discussion to currently popular agile software engi-
neering and presents the Scrum process model. Section 2.3 introduces
non-functional requirements with a special focus on maintainability and
modularity, as these -alities are in the core of building long-lasting soft-
ware products productively. Section 2.4 changes the focus to productivity
in software engineering, which is the key for companies and other software
organizations to be able to compete in the market place. In section 2.5,
we develop a model for investing in software process improvement and in-
troduce the paradox of process improvement in agile processes. Finally,
section 2.6 explores the ways of resolving the paradox.

2.1 Software engineering

ISO/IEC/IEEE Standard 24765 defines software engineering as ”the ap-
plication of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; that is, the application of

9

10 2 Preliminaries

engineering to software” [ISO10].

Software engineering as a discipline was born in the late 1960’s as a
response to the software crisis, a term used to describe the phenomenon
of software developers and software tools failing to keep up with the rate
of hardware development [Nat68]. Advances in hardware allowed more
complex software to be developed, but the means for handling the increased
complexity was lagging behind.

Since then, software engineers have explored ways to build larger and
more complex systems correctly and in predictable schedules. Generally,
the final solution is yet to emerge.

However, in recent years, the area of software engineering has been
maturing at a fast rate. In 1994, researchers of the Standish Group reported
that only 16% of software projects were completed in time and in budget
[Cha94]. In 2003, this number had doubled to 34%, as reported in a follow-
up text [Cha03]. By 2009, the success rate had stayed in about the same,
reporting 32% success in delivering projects on time, within budget, and
with required features and functions [Cha09]. Especially larger projects
tend to be failure prone: according to productivity research, projects with
over 10,000 function points1 have an alarming cancellation rate of almost
50% with the remainder being delivered late and over budget [Jon08, p.
216].

There has been an impressive improvement in success rates since the
early 1990’s. Still, much room exists for doing better. During recent years,
one project out of three can be seen to be successful in these terms. Even
for a success rate of 80% there is the other side of the coin: one project
out of five still exceeds its time or budget constraints. Although the Chaos
reports have received negative feedback on their methodology and data
validity [LEV10], the longitudinal data series is often cited as the definitive
source of high-level project success in software engineering.

Yet another viewpoint to this subject is that succeeding to meet time
and budget constraints is mainly the interest of the project manager of
a given project [AR06]. For other stakeholders, the primary interest can
be something else. For example, the client of the project is often happy
to exceed the initial budget, when new opportunities for building better
functionality are discovered during the project [SAR12]. For this reason,
whether a project meets its time and budget constraints cannot be con-
sidered as the definitive success measure - but instead, the notion of suc-
cess seems to be relative to the context and perception of the stakeholders
[MM10].

1We will discuss the concept of function points in section 2.4

2.1 Software engineering 11

If we choose to dismiss the properties of project meeting its budget
and completing the features on time as a definitive source of project suc-
cess, the next question is what is the alternative definition. One answer is
that we argue that small overcomes in budget and schedule do not mat-
ter; and being slightly short of the functionality can be corrected at the
maintenance phase. Another view is to regard software as a way of opera-
tion; the software evolves along its surroundings. Then, the question is not
about meeting the budget and schedule, but about being able to respond
to change requests in a timely manner.

Software process models

Great deal of attention in software engineering has been given to find out
the suitable process models for software construction. It was already quite
early understood that software with any non-trivial complexity needs to
be developed iteratively [Roy70] instead of the one-way process from re-
quirements to coding and operational use, which some people call ”the
waterfall”.

A classical way to characterize of different types of software systems is
to divide them into three categories as follows [Leh80]:

• S-type programs, which are those that can be specified formally.

• P-type programs, which cannot be specified, but an iterative process
is required for producing them.

• E-type programs, which interact with the real world, thereby chang-
ing it. A feedback is needed to evolve the program according to new
needs.

The big majority of commercial software lies in the E-type category.
New software enables new ways for organizations to work, which is reflected
in organizational structures. Changes in the organizational structures then
initiate changes to the software as well.

Scientific literature contains a number of different process models that
try to embed the requirements of the E-type category. Well-known ex-
amples include the spiral model [Boe88] and the Rational Unified Process
(RUP) model [Kru03]. Since nowadays the main use of these models is
mainly limited to frightening sophomore-year students, we do not cover
their specifics further. The interested reader can see the standard software
engineering textbooks, such as [Som10, Pre10, Sch05] for a more thorough
discussion of these software process models.

12 2 Preliminaries

During the last two decades, the mainstream of software development
has turned into using different kinds of agile processes.

2.2 Agile software engineering

The currently popular agile process methods help projects to avoid big mis-
takes of producing the wrong product to the wrong customer at the wrong
time. Improved communication with the customer, learning effect within
agile iterations and time-boxed development all contribute as process-level
reinforcements to project work.

The agile manifesto [HF01] gives four high-level guidelines for agile soft-
ware projects:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

These preferences are not to be regarded as mutually exclusive choices,
but rather as experience-shown preferences on which to give priority in
case of conflict. For example, a study on developer perspectives in software
development reported a case where the project that developers felt to be
the most successful was also reported to be most lacking in tool support
[Lin99].

For a general overview of the various agile methodologies, the interested
reader can read a comparative survey by Abrahamsson et al. [AWSR03].
Currently, the majority of agile development teams use the Scrum develop-
ment model, with over 75% deployment rate reported in year 2011 [SS12].

Scrum

Scrum [Sch95] is an agile process model intended to fix deficiencies in its
predecessors, the waterfall, spiral and previous iterative models. The main
idea is to loosen the requirements for the process during iterative sprints:
only preplanning and system architecture phases and the closure phase
have a defined process. Inside the sprints - when the heat is on - there is
minimal bureaucratic overhead. The name Scrum was first used to describe
the way how Rugby players change their playing style according to events
in the play field: during the game, a player cannot ask directions from

2.2 Agile software engineering 13

the coach, but he needs to take his own initiative. The same is thought
to apply to software development as well: for maintaining flexibility, not
every change needs to be accepted by the project management. Figure 2.1
gives an overview of the activities in the Scrum methodology.

Figure 2.1: Scrum methodology [Sch95]

The interplay between well-defined, rigorous process and creativity-
enabling freedom is balanced by having the planning and closure phases use
defined processes. Here all processes, inputs and outputs are well defined
and knowledge of how to execute is explicit. The flow is linear, with some
iteration in the planning phase. The sprint phase is a different beast: it is
an empirical process. Many activities in the sprint phase are unidentified
or uncontrolled. Management-wise, it is treated as a black box, with only
limited controlling interfaces, such as risk management given to prevent
chaos, but otherwise targeting to maximizing flexibility [Sch95].

A sprint is a time-boxed set of development activities. The usual time
limit ranges from one to four weeks; based on product complexity, risk as-
sessment and degree of required oversight. Within the sprint, one or more
teams concurrently execute phases of development, wrap-up, reviews and
adjustment. Development consists of the actual doing: defining what is
needed to be done in order to fulfill the development items in the backlog:
domain analysis, design, development, implementation, testing and docu-
mentation. Wrap-up is the phase of building deliverable software. Review
activities are the parts that require team communication to present work
and review progress. Adjusting activities are those adjustments that are

14 2 Preliminaries

discovered after reviews [Sch95].

It is important to note that these activities run sporadically within the
iteration. During planning and system architecting, the general strategy
for the next iteration is defined. However, if the situation changes during
the sprint, the plans need to be adjusted ’on-the-fly’.

In the beginning of this section we reviewed how only a small fraction of
software projects are able to deliver the required functionality within sched-
ule and budget. Achieving this target is easy in Scrum. This is because all
three components of this ’iron triangle’ of required functionality, schedule
and budget are defined in the project with the permission to redefine when
the original estimates turn out to be overly optimistic.

Overall, the Scrum method promises throughout responsiveness to en-
vironment with a permission to use unlimited creativity within sprints - as
opposed to cookbook approaches in the predecessor process models. The
problem of knowledge transfer is thought to be handled through teamwork
during the project.

From the productivity viewpoint, the Scrum model has been success-
ful, especially in small projects. According to productivity research, Scrum
and other agile software engineering methods are providing the best pro-
ductivity rates amongst the compared technologies in applications of size
1,000 function points. For example, Scrum combined with object-oriented
programming is said to achieve three times higher productivity than the
traditional waterfall: Scrum+OO averages to 24 function points per staff
month while the waterfall method averages to only 8 function points [Jon08,
p. 220].

2.3 Non-functional requirements

When deciding whether a software product meets its specification, software
professionals tend to primarily think about the functional scope of the prod-
uct [AR06]. However, the causes for software to not meet its specification
is seldom related to not being able to provide the required functionality;
more often the root cause is related to poor quality [Jon95] or other non-
functional requirement.

Non-functional requirements document non-behavioral aspects and con-
straints of the software. In addition to performance requirements, non-
functional requirements include a number of ”abilities”, e.g. reliability,
usability, security, availability, portability, and maintainability [Gli07].

The non-functional requirements are notoriously difficult to express in
contracted software development [CdPL02, PKdWvV12]. In the view of

2.3 Non-functional requirements 15

agile productivity, the first five abilities mentioned above can be regarded
as normal requirements: regarding these, the software can be iteratively
developed until the customer is happy. The last one, maintainability, has
a different nature. It is the degree of maintainability that dictates how
efficiently all other abilities and emerging new functional requirements can
be implemented. For this reason, we will study maintainability a bit more.

Maintainability

According to Lehman’s first law on software evolution, software is a living
entity [BL76]. It is not enough to get a software product deployed into
production once; instead the time of deployment is when a new software
entity is born. The newborn baby starts to grow through maintenance
tasks, which adjust the functionality of the software to fit the changing
environment it lives in.

Maintenance tasks often consume the majority of resources spent during
the lifetime of a software product. Software engineering knowledge cites
the amount of maintenance effort to range from 66% to 90% of the overall
spending in software projects [Pig96, Sch05, SPL03].

The importance of maintainability is especially relevant when operating
in the agile mode. The repeated iterations with the proposition of embrac-
ing change can cause unbearable pressure if the software has not been built
to be maintainable. Actually, some professional programmers advocate
that programming should always be done in the maintenance mode [HT99,
p. 27].

Evolvability has been mentioned as being on the top-level importance
in computing [Den03]. Some researchers even argue that software evolu-
tion is the most important factor to influence productivity in any software
development project [Nie02]. Especially in the area of agile software de-
velopment, this statement is true due to short iterations and the need for
ability to change the direction of development after any given iteration.

Maintenance-related tasks have a high relative weight in effort distribu-
tion charts. Thus, applying techniques to make maintenance-related tasks
easier should be a key priority for software designers and in software ar-
chitectures. For example, a central problem in software maintenance is
in understanding all the internal dependencies in the system. Systematic
refactoring can be applied to reduce the effort of changing the same code in
many places [Fea04, p. 269-287]. However, this kind of advice is targeted
to the maintenance programmer, who needs to understand all the depen-
dencies in order to be able to refactor a better design. It would be better
to design the system in the first place in such a way that the dependencies

16 2 Preliminaries

do not hurt the maintenance programmer at all.

In general, maintenance refers to all the tasks that are required to keep
an already shipped software product to fit in its changing environments. A
usual classification of maintenance splits these tasks to corrective mainte-
nance, adaptive maintenance and perfective maintenance [Swa76, LS80, p.
68].

Corrective maintenance consists of the tasks required to fixing the soft-
ware bugs; all the work that could not be billed if the software was still
under warranty. Adaptive maintenance refers to tasks where there is a need
to change the software due to changes in data input or requested changes
in output formats or interfaces. Perfective maintenance in turn consists
of enhancements for users, improvements in software documentation and
improvements in software performance [LS80, p. 68]. At later times, there
has been a tendency to further classify parts of this effort into preventive
maintenance, it being included as the fourth maintenance factor in the
IEEE standard on software maintenance [ISO06]. Preventive maintenance
consists of those tasks that are not performed due to bug fixing or user-
requested enhancement, but to prevent failures in the future or to make the
other types of maintenance tasks easier. In software context, many preven-
tive maintenance tasks can be thought of being code refactorings without
observable changes in functionality [Opd92].

Of all of these categories, the non-corrective maintenance tasks are the
ones where most of the effort is being spent. Non-corrective maintenance
has consistently accounted for over half of the effort spent in maintenance
[AN93, DA10, LS80, p. 68]. In summary, this is the category of software
work where the biggest share of software teams are spending their largest
amount of time. A direct economic implication is that any techniques that
can be used to reduce the absolute amount of effort spent in this share do
significantly reduce overall software costs.

For maintaining existing software, there are textbooks that recognize
common cases of maintenance-related refactoring tasks. Current devel-
opment environments offer a range of automated refactoring tasks. E.g.
[Fea04] documents 24 techniques for breaking dependencies in legacy object-
oriented code that does not (yet) follow the current best practices of build-
ing unit tests, test-harnesses and design for testability.

Modularity

Building modular systems is a way to reduce the required effort in mainte-
nance. Using correct tools to solve the right problems can yield big benefits.
An early study reports that 89% among users of structured programming

2.3 Non-functional requirements 17

reported improved maintainability of their code over unstructured program-
ming [LS80, p. 7].

Programming languages contain a number of modularity techniques
to improve productivity in software construction. For example, object-
oriented programming and aspect-oriented programming are essentially
ways to use suitable abstractions for developing reusable building blocks.

Program development by composing the program from a number of
smaller building blocks is thought to be an efficient way of software engi-
neering. However, the real problem is how to find the correct components
and how to glue them together. Object-oriented programming introduces
the notion of object as the basic building block. Aspect-oriented program-
ming supports different aspects to be introduced to the program, allowing
the functionality of the program to be defined from different angles. In both
of these approaches, the joining of different modules is still done manually.

Designing modular architectures is the key when planning to support
maintainability of software. There are a number of obstacles to hurdle when
approaching a good decomposition of software to modules. However, the
chosen decomposition greatly affects how well the software is modifiable, as
was shown in an early study of two software implementations with different
modular decompositions [Par72]. Although a good modular decomposition
helps in further maintenance, it should be noted that in many cases the
”perfect” decomposition does not exist, but instead any chosen decompo-
sition is a compromise that favors one maintainability aspect over another.
Any chosen way to modularize the software will serve some purposes on
the expense of some other. This is known as the tyranny of the dominant
decomposition [TOHS99].

The term modularity is unfortunately rather overloaded and requires
clarification, since its meaning varies from one environment to other. For
this section, we will use a metaphor of Lego® bricks to discuss modularity
in a broad sense. These widely known plastic bricks can be seen as a
metaphor for modularity. Each one of the little plastic bricks defines a
certain connectivity interface through its upper and lower interfaces. When
two bricks are connected through these interfaces, they form a new element,
which can be regarded as a single, larger element with its own connectivity
interface. Generation after generation, children’s creativity is tickled with
these simple but infinitely modifiable toys – there are hundreds of millions
of ways to connect six 2x4 bricks [DE05].

One can reason about these two bricks and their corresponding compo-
sition algebra: two 2x2 bricks can be connected in 18 different positions2.

272 different ways if the cheeks of the bricks are considered to be distinct

18 2 Preliminaries

One of these combinations is shown in Figure 2.3 as an attempt to start
building an infinite stream of steps.

Figure 2.2: Two 2x2 Lego® bricks connected

Adding a third 2x2 brick makes the compound model even more compli-
cated: now there are 729 different ways the three pieces can be connected.
When continuing with the attempt of building the stairway to heaven, a
previously unknown force, gravity, steps in. Each object in our physical
universe has mass, which causes all objects attract each other in force pro-
portional to their mass. When the structure in Figure 2.3 is placed on an
even surface, its center of gravity is outside the bottom surface area of the
blue brick. Thus this structure crashes when no additional force is used to
keep it in balance.

Figure 2.3: A three-step model with its internal balance out of bounds

Working in software development often reveals similar forces in the soft-
ware. The software and its structure can work well in one configuration, but
after a number of changes following the current architecture, its internal
”center of gravity” is exceeded and the system crashes. Due to the nature
of maintenance programming, the maintainers are not always fully aware
of the forces defining the internal ”center of gravity” of the maintained
software.

Software is full of these kinds of hidden dependencies, where a seem-
ingly innocent change can cause malfunction or crashing. Programmers
have learned to defend themselves and their colleagues and customers from
excessive rework by designing their software in a way that is resilient to
future changes. One way is to document the anticipated ways of future

2.4 Productivity in software engineering 19

modifications.

A pattern of documenting the maintenance tasks [HH04] can be used
to expose the software’s internal dependencies and to guide maintenance
personnel to the right direction when modifying the software’s structure.
For our bricks metaphor, a maintenance pattern would be stated as instruc-
tions to maintain the center of gravity in the overall structure, possibly by
adding counter-weighting bricks to any structure-modifying addition.

It is easy to confuse intentional and accidental maintainability. Pro-
gram designers and programmers often use constructs that are primarily
intended to act as a functional construct, while their purpose is just to build
safeguard constructs to improve maintainability. We can call this kind of
design a case of accidental maintainability. We need to distinguish those
constructs from intentional cases of a priori, explicitly designed maintain-
ability.

In the Lego brick example, a case of accidental maintainability for main-
taining the brick-structure’s balance could be to place a certain number,
say five, of counter-weight bricks on the first step. This way, the structure’s
center of gravity would stay within its constrained limits when new steps
are added, up to five steps. However, this approach is problematic in two
ways: first, it wastes resources when less than five steps is needed. Second,
when there is a need for the sixth step, the system crashes.

A system of intentional maintainability in this example would identify
the dependency between the number of steps and its implications to inter-
nal balance. Intentional maintainability would then instruct the stairway
builder to add the required counterweight for any number of steps.

2.4 Productivity in software engineering

Productivity is a key issue in professional software development. In many
software businesses, being able to produce more functionality in a given
timeframe is advantageous: in a productive environment customers gain
more value from software projects, and project professionals have higher
job satisfaction. However, relatively little attention has been paid to actual
productivity improvements in agile projects. This is surprising, given the
fundamental nature of productivity and productivity improvement in the
history of industrialized world.

The definition of productivity involves the ratio of outputs to inputs,
such as material, labour, and capital. Thus, productivity is defined as
follows [Boe87]:

productivity = outputs/inputs (2.1)

20 2 Preliminaries

An organization that can produce more products with less resources is
more productive. Being able to produce more outputs with the same input
makes an organization more productive; and producing the same output
with less input again means better productivity. However, in the context of
software engineering, the definition of productivity is problematic, mainly
due to the definition of output part of the equation.

In many cases, the inputs can be estimated. This variable includes
the resources consumed in the project. While some disagreement on the
attribution of indirectly involved resources such as departmental secretary
services is unavoidable, usually companies and organizations can settle to
a rough agreement on division of these costs. The inputs can be in various
forms, such as computing resources, network resources in addition to human
resources. However, a conversion to present currency value can unify the
consumption to a single number [Boe87].

The output part is the problematic to define [Boe87]. One suggestion is
to define the outputs as the delivered functionality at certain quality level
[Nie02]. However, this attempt does not solve the measurement problem:
what is the unit of functionality or quality? In order to measure, there needs
to be units of measurement. In the following, we review few traditionally
used measures, the lines of code and function points.

Lines of code

Lines of code and its variants, such as source lines of code and delivered
lines of code are the easiest variables to measure. Even crude tools, such
as the wc utility can be used to give a crude estimate and more accurate
tools can easily be obtained from open source software repositories. For
this reason, lines of code is industrially used measure for software size.

Also some scientific studies, such as [AK04, MAP+08] use lines of code
as the output measure. However, lines of code is a notoriously bad mea-
sure for productivity [FP98, pp. 405-412]. Actually, quite the contrary:
researchers associate less code lines to be the key to productivity [TB03].

Bill Gates is quoted of saying, ”Measuring programming progress by
lines of code is like measuring aircraft building progress by weight”, which
is a nice analogy in two ways: first, it emphasizes that the goal in building
a good airplane is not to make it heavier, but to make it lighter. The
second interpretation of the analogy is that big aircraft are distinguishably
different from small aircraft; similarly, a software whose size is measured in
tens of millions of lines of code is different from a software whose size is in
tens of thousands.

In the micro scale, the measurement in lines of codes is irrelevant. As

2.4 Productivity in software engineering 21

an example, consider the code listing in Figure 2.4. This code loops for
a specified number of times, and sleeps for one second. An equivalent
code could be written by unrolling the loop. This means to remove the
for-loop and to copy the loop body for the five times and substituting
the loop variables with corresponding values and performing the string
concatenations at coding time. In this case, the equivalent code would be
as shown in Figure 2.5.

for(int i=1; i<=5; i++) {

Thread.sleep(1000);

System.out.println(i+" second" +(i==1?"":"s")+ " passed.");

}

Figure 2.4: Code for watching the time go by

Thread.sleep(1000);

System.out.println("1 second passed.");

Thread.sleep(1000);

System.out.println("2 seconds passed.");

Thread.sleep(1000);

System.out.println("3 seconds passed.");

Thread.sleep(1000);

System.out.println("4 seconds passed.");

Thread.sleep(1000);

System.out.println("5 seconds passed.");

Figure 2.5: Unrolled code for watching the time go by

The unrolled version is probably more efficient, since it does not spend
time in calculating the loop conditions and constructing the current message
object. However, very few professionals would prefer the unrolled version
over the looping version in source code form: it violates the do not repeat
yourself (DRY) principle, which has been found out to be a good guideline
in constructing easily modifiable software [HT99, p. 27]. If we were to use
line count as the numerator of the productivity equation (2.1), the unrolled
version would yield a higher productivity index, since the first version line
count is 4, whereas the unrolled version contains 10 lines to produce the
same output.

The DRY-principle is not limited to this kind of mechanical loop un-
rolling, but applies also to questions of code style. To illustrate this idea, let

22 2 Preliminaries

us consider a simple command interpreter, implemented in the C language
as shown in Figure 2.6.

struct command

{

char *name;

void (*function) (void);

};

struct command commands[] =

{

{ "quit", quit_command },

{ "help", help_command },

...

};

Figure 2.6: Interpreter implementation as an array of structs [SW11, p. 19]

The code in Figure 2.6 defines an interface for defining commands. Each
command has a name and a pointer to a function implementing the com-
mand. By convention, each function is named after the command it imple-
ments.

This is a violation against the DRY-principle: the prefix in the function
name in the command table repeats the name of the command [SW11, p.
19]. Thus, it is considered to be cleaner to factorize the command names
as a common element, e.g. by using preprocessor directives. An equivalent
code, without repetition could be formed as shown in Figure 2.7.

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =

{

COMMAND (quit),

COMMAND (help),

...

};

Figure 2.7: Interpreter implementation by preprocessor concatenation
[SW11, p. 19]

In Figure 2.7 the code uses the C preprocessor token concatenation
operator [Ker88, p. 90] to define a macro for each of the commands. In

2.4 Productivity in software engineering 23

this example, after the preprocessing phase the source code is exactly the
same as the code in Figure 2.6. The latter version can be argued to be
cleaner and easier to understand.

Using line count as the productivity measure does not detect any differ-
ence between these two alternatives. However, when programs get bigger
and more complex, the quality of the code starts to make a difference. A
codebase with needless repetition and many dependencies can easily deteri-
orate into an unmaintainable state. Using the line count as a productivity
metric can add great momentum to the demise of the project.

Function points

The problem with the number of lines as a measure of software development
is well known. In order to better understand development progress and
to be able to compare similar software written in different languages, the
concept of function points has been developed [Alb79].

The idea with function points is to estimate the functionality of the
software at higher level of abstraction than just the actual lines of code.
When estimating the number of function points in a software, its function-
ality is dissected into small pieces that can be explained by the function
point analysis method.

Function point analysis is based on estimating data functionality and
transaction functionality. There are two types of data functionality: in-
ternal logical files (ILF) and external interface files (EIF). For transaction
functionality, the estimation is based on three types of transactions: exter-
nal inputs (EI), external outputs (EO) and external inquiries (EQ). Each
occurrence is judged to be simple, average or complex. Figure 2.8 gives an
overview of how application logic is estimated

For a given feature or component of a software system, the complexity-
adjusted data and transaction functionalities are charted through function
point analysis tables, which give out unadjusted function point values. Fi-
nally, this value is translated to the final function point value by applying
the value adjustment factor, which reflects the non-functional requirements
of the system. To get an estimate of the whole system, this process is re-
peated for all of its components.

Function point analysis is a lengthy process. A necessary pre-requirement
is the functionality of the software to be well understood, since otherwise
it would be impossible to enumerate all the components of the system.
For this reason, function points are not widely used in software develop-
ment methodologies that de-emphasize overly detailed upfront planning.
Another problem with function points is that they suit only certain types

24 2 Preliminaries

Figure 2.8: Elements of function point analysis

of application software. When applied in an inappropriate domain, such
as operating systems, the result can be that functionally similarly looking
operating systems targeted to the mobile phone and the desktop receive
equal amount of function points, as happened when estimating the Apple
Mac OS X full version and its mobile variant iOS [Jon08, p. 274].

Despite of not being a perfect measure, function points do provide a
better view on sizing of software than lines of code, especially in sizing
form-based information systems. Function points can be applied across
different programming languages and development methodologies to gain
understanding of whether investments to improved ways of working are
delivering the promised benefits. For different programming languages,
there are statistics-based equations for finding crude correspondences be-
tween lines of code and function points. These equations can be used to
anticipate the software’s implemented size when its functionality is known
in function points; or to estimate the software’s functionality in function
points when its size in lines of code is known. However, it should be noted
that these estimates are rather crude, as the software’s architecture and
the applied conventions in an individual project can have big effect to the
actual results.

2.5 Economic model for investing in software development process 25

2.5 Economic model for investing in software de-
velopment process

When investing in process improvement in software development, the ob-
vious question is how to estimate the return-on-investment. Return-on-
investment (ROI) is calculated by dividing the difference of benefits and
costs of a change by the costs of the change [Phi94, pp. 12-13], as shown
in formula (2.2).

ROI(%) =
Gain− Cost

Cost
∗ 100 (2.2)

In software development, the most important result is the working soft-
ware system. As this result is abstract in nature, it is often hard to estimate
causes and effects in the work producing the software. For this reason, also
giving exact figures for estimating whether process improvement is justi-
fiable is problematic in many cases. However, the general principles of
economic thinking can be used to guide in decision making, although the
exact numbers for a given decision might be impossible to calculate.

When a software development team is given a task to implement a
software product, the total cost of the project can be calculated as stated
in formula (2.3).

OC ∗OT (2.3)

In this formula, OC stands for operational cost and OT for operational
time. In a single project scope, operational costs are usually mandated
by the organization. Operational time is the time that the project needs
to produce the required functionality. The more efficient the development
team, the shorter time is spent in development. Equation (2.3) thus is de-
pendent on total factor productivity [CROB05, p. 3], which is productivity
measure that encompasses all the factors in consideration.

For example, if the average cost of one man-month in the project, in-
cluding the salaries, office spaces, cost of computer leases and so on, is 10
units, operating a software development team of ten people costs 100 units
per month. If the software development project takes three months, the
total cost of the project is 300 units.

Considering productivity improvement, the use of technologies for soft-
ware development varies from organization to another. In traditional man-
ufacturing context, the production frontier [CROB05, p. 3] refers to the
curve of how many output units can be produced per one input unit when
the production is scaled and the organization is using the best technology

26 2 Preliminaries

for production. In production frontier, usually a larger scale yields less re-
quired input per output. An organization that is at the production frontier
is said to be technically efficient.

Software development projects are seldom technically efficient. Capers
Jones has presented an estimated an average of 35% efficiency in software
development [Jon94, p. 228]. The requirements are typically defined dur-
ing the project, which causes changes in the technologies for reaching the
production frontier. Even if a project happened to be technically efficient,
technical changes in development environment can cause the production
frontier to move [CROB05, p. 4].

This is good news for productivity improvement: there is a lot of work
to be done. However, application of technical changes and improvement
proposals for moving towards the production frontier need to be justified.
Seldom do these changes come for free: instead, all changes have an as-
sociated cost, and they take time to be implemented. On abstract level,
the economic decision criterion for performing an improvement, using any
given technical change or by adjusting the development process can be ex-
pressed as in equation (2.4), where the new term OT’ stands for the new
operational time after an investment to a changed way of working.

OC ∗OT > Cost + OC ∗OT ′ (2.4)

In other words, the initial investment to implement new practice or
employ new techniques within the project can be justified if the costs with
new operations amortized over total operational time are smaller than the
alternative of running the operations without changes.

Let us have a hypothetical development practice that gives 25% im-
provement on productivity with no other consequences to related variables.
Implementing this practice has a fixed cost of 50 units and it is immedi-
ately implementable whenever the project chooses to. If available at the
beginning of the project it should be employed, as the improvement on pro-
ductivity shortens the required time to implement the project from three
months to 2,4 months, thus promising an earlier delivery and overall sav-
ings on expenses. However, if the given practice becomes available at the
beginning of the last month, it is no longer clear whether it is justifiable
to employ the practice for this project. The improved productivity allows
the work in the last month to be performed in 80% of the time. However,
the saving of 20 units in operating cost does not warrant offsetting the
initial cost of 50 units for this practice - but instead causes the overall de-
velopment bill to exceed the budget by 30 units3. However, the improved

3100+100+80+50 = 330

2.5 Economic model for investing in software development process 27

Figure 2.9: Expenditure graph

productivity allows to ship at a week earlier, so depending on the context
the higher total cost might still be justified by faster time-to-market.

Figure 2.9 draws an expenditure graph for the three alternatives. The
baseline spends all three months with linear spending curve. When the
productivity upgrade is obtained in the beginning of the project, the initial
cost is higher, but the improved productivity gives faster completion time
and smaller expenses. The productivity upgrade, brought at near end of
the project still gains faster shipping, but the overall cost is the highest.

In reality, this kind of reasoning for real software projects is very hard,
maybe impossible. This reasoning does not take into account Parkinson’s
observation [Par57]. This observation refers to the phenomenon of work ex-
panding to fill all the available time. Our example assumes a fixed amount
of work, which seldom is the case. In practice, the 20% of the time saved
in the last month would probably not be used to ship earlier, but instead
be used in various, unaccountable ways, such as gold plating the software,
which is a known anti-pattern of commercial software development [McC96,
p. 65].

Another problem is that productivity rates vary between individuals
and team mix-up in orders of magnitude [Gla02, pp. 14-15], and the hy-
pothetical instant productivity boon option is just a project manager’s
daydream. Instead, various factors, such as the learning curve [Gla02, pp.
23-24], suitability of improvement into context and scalability of the im-
provement need to be taken into account. These are not easy to estimate
beforehand.

However, the basic principle behind equation (2.4) is often encountered

28 2 Preliminaries

in software development organizations: new practices and technologies are
discovered, and a return-on-investment justification needs to be found for
employing the practice in question. Unfortunately, most often the exact
effect of the practice is not well understood; but instead, practicing profes-
sionals are faced with vague explanations of merits of the new technique.
Even with a piloting implementation in the organization, it is very hard
to measure the exact effect of the new technique, as distinguishing the
new technique’s effect from other productivity measures is mostly based on
individual feelings rather than objective measures.

Process improvement in agile processes

The example in previous section discussed an extremely simple process
model with a fixed amount of work to be done. Real software projects,
especially the ones employing agile principles, are by nature more chaotic:
accepting the fact that requirements are not known beforehand and the
fact that the direction of development might change at any iteration, agile
software teams agree with their customer on a time-boxed development
model.

From the process development viewpoint, the principle of sudden change
is problematic, as intra-project improvement cannot be justified via amor-
tizing the investment costs to future iterations. This is because the deal
with the customer does not last longer than to the end of the iteration: the
next iteration materializes only if the shipping product in the end of the
previous iteration pleases the customer well enough and assures him that
the value brought by implementing the next iteration exceeds the cost. For
this reason, all work in an agile project needs to be in sprintable form
[Mad10].

This strict time-boxing of software development in agile process mod-
els introduces an additional constraint to the economic decision criterion
of equation (2.4). Given a two-week sprint cycle, as exercised by many
companies following the Scrum model [Sch95], any process improvement
initiative needs to be fit in the same cycle. Traditional justification for
return-on-investment calculations spans for the range of many months or
up to a year [VS04].

At this point, we need to discuss about value of the work, i.e. what
is gained by assigning an engineering team to a given problem. Given a
baseline productivity, the value of the work is

value = OT ∗ P (2.5)

In equation 2.5, P refers to the productivity of the team, which is 100%

2.5 Economic model for investing in software development process 29

for the baseline. Equation 2.4 discusses whether productivity improvement
can be justified by cost savings. Agile projects are more interested in deliv-
ering value to the customer. Thus, the economic decision criterion in agile
process models translates to the following format:

OC ∗OT ∗ P < Cost + OC ∗OT ∗ P ′ (2.6)

The difference between equations 2.4 and 2.6 is that in the former, an
investment to software development process is justified by the shortened
development time indirectly brought by productivity improvement. In the
latter equation, the operating time is the same on both sides: regardless of
productivity, the team commits to a single, time-boxed iteration at a time.
Improved productivity brings more value to the customer: however, there
is a paradox in that tighter time-boxing reduces the room for productivity
improvement, since the cost of any improvement must be paid within the
same time-boxing unit where it is to be taken into use. Otherwise, the
team is not delivering full value to the customer.

It will be very hard for the suggested initiative to gain acceptance within
the development team if it is not deliverable within agile iterations, as
committing to the process improvement also endangers the continuity of the
whole project. This happens not only because the external environment is
setting the team’s development tact to follow the time-boxed iterations, but
also due to the internal pressure within the team to follow agile principles
of meeting demands of the customer by the end of every iteration.

These reasons can be formulated as the paradox of agile process im-
provement: In an agile project, the closer the customer is watching the
project, the harder it is to implement productivity improving practices.

On-site customer is a core extreme programming methodology princi-
ple. However, on productivity improvements angle this principle is contra-
dictory: any investment that is expected to pay off after more than one
iteration in improved productivity cannot be justified, because the agree-
ment on the next iteration is based on the outcome of the current iteration.
If the development team induces the customer to include additional process
improvement efforts to a single iteration, the team is steering away from
the agile principles of delivering value at the end of each iteration.

The paradox of agile process improvement is also related to issues of
architectural problems in agile projects. As the agreed scope for a given
project does not last over the end of the ongoing iteration, any effort spent
on improving the internal working methods is perceived as lessening the
available effort for value creating activities. Lack of time to consider design
alternatives has been recognized to be a problem for many agile projects

30 2 Preliminaries

[Bab09].
For this reason, the process improvement schemes available to a project

using an agile process are limited to well-matured techniques with proven
tool support. Examples of agile-associated techniques are e.g continuous
integration, unit testing and version controlling. Each of these process tech-
niques are clearly initially implementable within a very short timeframe,
thus not endangering the value delivery promise within the iteration. Still,
e.g the documentation for Selenium, a well-known web software test au-
tomation tool raises the question [HISMP+13]:

”Is automation always advantageous? When should one decide
to automate test cases? It is not always advantageous to auto-
mate test cases. There are times when manual testing may be
more appropriate.”

For Selenium, the authors find two example cases in which investment
for building test automation is not beneficial: If it is known beforehand
that the application structure is going to change considerably, building test
cases would be wasted effort. Another case is that sometimes there simply
is not enough wall-clock time or developer time to do this:

”[S]ometimes there simply is not enough time to build test au-
tomation. For the short term, manual testing may be more
effective. If an application has a very tight deadline, there is
currently no test automation available, and it’s imperative that
the testing get done within that time frame, then manual testing
is the best solution.”

This viewpoint emphasizes the need to balance between short-term and
long-term goals. Due to the fact that in agile projects the next deadline
is always very soon, it is difficult to justify much investment in building
e.g. test automation, as it does not bring direct value to the customer
by the end of the on-going iteration. However, this kind of investment is
mandatory when efficiency in development is a target goal.

In the running example at the beginning of this section, the hypothetical
productivity implementation was assumed to be available immediately and
at a fixed cost. In reality, this is a rare case to happen. Instead, new
practices take time for the development team to get accommodated to, and
benefits are often non-linear. For these reasons, project managers are often
more reluctant to add new practices to projects when the next deadline is
approaching. Which is always too soon.

The requirement to time-boxing forces the improvements to reside within
the time-box as well. The unfortunate consequence of this requirement is

2.6 Recovering from the paradox 31

that the available improvement techniques are those that are well under-
stood, general principles with proven tool support. No room for exper-
imentation limits the possibilities to trivial projects that are executable
regardless of the used process model.

2.6 Recovering from the paradox

Several authors have proposed ideas for shaping the state of software engi-
neering in the future.

First of all, there is a tendency to relax the view that all activities should
be financially or technically justified before implementation. On general
level, even the most prominent proponents of measurement and control are
now suggesting that all measuring is not reflected with an associated benefit
[DeM09]. Despite the author’s earlier motto of ”You can’t control what you
can’t measure” [DeM86, p. 1], now the cost of measurement needs to be
taken into account: the benefits of control should overweight the costs of
measurement. According to the author, there are many projects where this
situation does not hold.

The lean software engineering movement also walks in the same direc-
tion [PP03]. Instead of giving fine-grained advice of e.g. how to organize
the development work into pair programming and 40 hour working week, as
is done in the extreme programming literature [BA04], the emphasis is on
how to eliminate waste on a more general level. The important change in
the mindset is that once a source of waste, such as too much resources be-
ing spent on repetitive manual testing, has been recognized, the repetitive
parts should be automated.

In a tightly time-boxed iteration, deploying an automated test environ-
ment does not make economical sense, given the economic decision criterion
of equation 2.6; for that given iteration, doing testing manually provides
more value. But for the long run, automating the thing is the key for
efficiency, since automating the tests reduces the unit-cost of executing a
testing cycle to a fracture. So, the transition to post-agile, lean software
development can be observed to happen in many software development
organizations today.

This transition can be characterized by the swift of focus from intra-
iteration optimization to a longer-term planning. Optimization target is
changing to long-term efficiency, although it can mean that the customer
does not get full, short-term value at all times. Lean development advocates
take this idea even so far that they propose that results are not the point in
software development [PP09, p. 199]. In this thinking the idea is to build

32 2 Preliminaries

efficient teams whose overall productivity greatly surpasses the short-term
optimizing team’s performance.

Chapter 3

Software architectures, models
and product lines

Discussing software development productivity is fruitless if concrete ap-
proaches to structure development work are not brought into the discussion.
In this chapter, we review software architecture, software modeling and soft-
ware product lines as tools for building better software faster, cheaper and
with better quality.

Software architecture defines the bounding box for any given product
to succeed: when the architecture is fit for its purpose, building the actual
product becomes much easier. On the other hand, when the chosen archi-
tecture does not support the product, most of the effort will be spent in
circumventing the deficiencies in the architecture [TLB+09].

Software modeling is a key tool in designing architecture. When model-
ing is combined with generative programming, parts of the software can be
automatically generated, thus reducing the manual effort needed to com-
plete the project.

Finally, software product lines are a way to scale software development
from a single project to a number of similar projects, enabling productivity
increase via shared components that encapsulate commonalities between
the different products.

The rest of this chapter is organized as follows. Section 3.1 discusses
software architecture and the difficulty of its exact definition. Section 3.2
reviews software modeling and model-driven engineering. Section 3.3 casts
a view on software modeling in the context of agile processes. Section 3.4
relates software product line engineering to software architecture and soft-
ware modeling. Section 3.5 elaborates on how self-configuring components
can be employed to form self-configuring software architectures in model-
driven software engineering and in software product lines.

33

34 3 Software architectures, models and product lines

3.1 Software architectures

Software architecture is a notoriously hard concept to define exactly. Soft-
ware architecture researchers at Carnegie Mellon University have collected
a listing of 29 different definitions from the literature [SEI13], which illus-
trates the diversity of the concept.

Figure 3.1: A word cloud generated by the different architecture definitions

To give a quick overview on the terms that are usually used to define
software architecture, Figure 3.1 shows a word cloud generated from all of
these definitions. Based on this cloud, it becomes apparent that software
architecture deals with the elements of software systems. Architecture con-
sists of components, structure and the architectural design; the constraints
and properties and their relationships.

Many people do not take the term architecture seriously at all. For
example, some agility researchers define software architecture as the result
of work done by software architects. Software architects, in turn, are defined
to be the people who create software architecture [Kru08]. This logic may
be written partly in tongue-in-cheek style, but maybe only partly.

Although researchers seem to be unable to agree on the definition of
software architecture, it is important to recognize that software always
has its architectural design, even though it might not have been explicitly
documented. However, a documented architecture helps in understanding
the functionality of the software and makes further maintenance easier and
thus more productive. Unfortunately, one of the dirty public secrets of
software engineering is the lack of documentation. In open source projects,

3.2 Model-driven software engineering 35

people asking for documentation are usually answered ’RTSL’ 1.

The problem lies in the area of duplication: when software is being
changed, the primary locus of activity is to get the software working in the
anticipated way. Updating of the documentation might get done, if time
permits. Most often it does not.

In the past, a number of attempts to salvage the situation have been
done. For instance, literate programming [Knu84] was proposed as a way
to write such clean code that the documentation could automatically be
generated from it. A more recent attempt is to make the artifacts previously
intended primarily for documentation to be the actual source code. This
turns our attention to model-driven software engineering.

3.2 Model-driven software engineering

In the past, raising the level of abstraction has been a successful approach
to many software engineering problems. Model-driven software engineer-
ing is a further step in this direction. The idea is to allow majority of
developers to concentrate on the task at hand, without the need to need-
lessly pay attention to technical, low-level details. This is supposed to yield
improvements in three areas [BCT05]:

1. Productivity – developers can solve business problems faster.

2. Quality – use of automation results in more consistent outcomes.

3. Predictability – standardized transformations help to build a pre-
dictable development process.

Models are used in various forms. The most obvious form is the tra-
ditional boxes-and-arrows type of modeling, in which graphical notation is
used to present concepts or ideas and relationships between them. In soft-
ware engineering, currently UML is the most often used language for graph-
ical representations of the developed software [Kro03, GKR+07]. However,
the concept of modeling is not limited to drawing pretty pictures to the
whiteboard or into a CASE tool - actually the opposite. Some academics
dare even to say that UML is the worst thing to happen to model-driven
development [Coo12] due to a number of reasons: It works on the same level
of abstraction as program code; the fixed number of diagram types does not
provide enough coverage; the language is too complex, but not expressive
enough; the division of platform-independent models and platform-specific

1read the source, Luke

36 3 Software architectures, models and product lines

models is misguided and finally UML makes people to believe that models
must be graphical [Coo12].

Models can also be presented in a textual form [GKR+07]. A num-
ber of benefits for both the language user and the language developer have
been identified, including denser information content, speed of model devel-
opment, easier integration between languages, platform independence and
easier interoperability with version control systems, to name a few. An
empirical study comparing the use of textual and graphical models found
that participants who predominantly used text scored significantly better
in communicating software architecture design decisions [HKC11].

The choice between graphical and textual modeling languages is not
a mutually exclusive question. Both can be used at the same time. For
example, the UML standard includes an XML-based format for model inter-
change called XMI [OMG07]. Although the graphical elements of UML are
often first cited, the language’s constraint rules language OCL [WK03] is
primarily a text-based language. Thus, UML is actually a hybrid language.
Researchers have produced prototypes for other kinds of graphical/textual
model interaction as well [EvdB10].

Another, important architectural choice is the division between external
and internal models. The normal interpretation is that models are external
to the architecture of a software. In external modeling, the model artifacts
are developed in an external tool and are incorporated into the software by
the means of manual, semiautomatic or automatic translation.

When using internal modeling, the model is built as part of the soft-
ware’s architecture. For example, object-oriented modeling being done on
the abstraction level of a programming language, using the programming
language as the sole notation is an example of using an internal model-
ing language. One example of this approach is well documented as the
domain-driven design paradigm [Eva03]. Other examples of internal mod-
eling include the use of domain-specific languages.

Model-Driven Architecture

Model-driven architecture [MM03] approaches reusability by separating
concepts into three layers: platform independent model (PIM), platform-
specific model (PSM) and program code. Traversal between these layers
is done via transformers: a platform independent model is translated to a
platform-specific model by using a transformer, which augments the model
with platform-specific attributes. A similar transformation is applied when
translating the PSM into program code.

A typical platform independent model is expressed as a UML class di-

3.2 Model-driven software engineering 37

Transform2Java
public class Customer {
 private int ID;
 private Date creation;
 public String name;
 public String address;
 ...Transform2SQLDDL

CREATE TABLE customer (
 ID INTEGER primary key,
 CREATION TIMESTAMP not null,
 NAME VARCHAR(30),
 ADDRESS VARCHAR(45));

+Name: String
+Address: String

Customer

Customer(ID)
getName: String
setName(String)
getAddress: String
setAdderss(String)

- ID: integer
- Creation: Date
+Name: String
+Address: String

Customer
Transform2EJB

PIM PSM Code

Figure 3.2: A UML model with transformations to Java and SQL

agram which contains only class attributes, possibly with programming
language-level visibility information and data type annotations. A trans-
formation creates corresponding programming language, e.g. Java classes,
with accessing methods for each of the public attributes, or data-definition
statements for a relational database.

Figure 3.2 represents a typical case, in which a highly abstracted class
model (PIM) expressed in UML is first transformed to a platform-specific
class model (PSM). In this transformation, the class is augmented with
platform-specific features, such as accessor methods and constructors. This
model is then further transformed to programming language code by the
next transformation. Yet another transformation generates the correspond-
ing database definition.

These transformations contain target-specific parametrization, as the
transformation contains information about the target platform. In the
UML-to-Java transformation, UML standard visibility rules are followed,
but a data type transformation from UML integer to Java int is performed.
In the UML-to-SQL transformation, similar platform-specific knowledge is
being encoded. Most notably, the transformations also contain information
about the system that is not shown in the source model. For example,
the knowledge about different field sizes for Name and Address that have
the same data type in the source model is encoded into the UML-to-SQL
transformation.

Two distinct interpretations of using model-driven architecture tools
have been identified. The first is the elaborationist approach [KWB03], in
which the idea is not to even try to provide a complete set of operational
transformations. Instead, the models are used as an initial kickstarting set,
and the transformers produce a skeleton of the produced software. After

38 3 Software architectures, models and product lines

the initial generator run, programmers take over and do further modifica-
tions by hand. Obviously, this approach entails the round-trip engineering
problem, since the initial models are useless after a few modifications to
the generated code.

The second interpretation is the translationist approach [MB02], in
which the target is to have the human modeler to work only in the model
world and translations then generate the whole application. This is done,
for instance, by introducing a new UML profile with a defined action se-
mantics that is used in the application generation. This approach highlights
one of the most fundamental problems with model-driven architecture: the
inflexibility of toolsets and the (morbid) rigidity of extensions.

A notable shortcoming in using UML class diagrams to express the
platform independent models is lack of extensibility [FGDTS06, SB05]. A
class diagram can directly express only a limited set of parameters, such
as visibility, data types, and default values. Further extensions require
using UML profiles. A number of proposals for using profiles to express
variability have been presented, e.g. [PFR02, KL07].

The problem with UML profiles relate to tool support and decreased
interoperability and the dominance of chosen modularity. First, profiles
may or may not be supported by the used toolset; toolset immaturity is
one of the problems identified in the model-driven engineering literature
[MD08]. This leads to decreased interoperability, as transferring models
from one tool to another may lead to very unexpected results.

Poor interoperability between different tools is a problem related to
toolset immaturity. The model interchange format XMI does specify how
to define elements on the abstract level, but e.g. diagram layout is still
being implemented via vendor-specific extensions [SB05]. Currently, tool
interoperability is being built as point-to-point connections, e.g. by building
a bridge from Eclipse to Microsoft modeling tools [BCC+10].

Other problems rise when trying to find the correct level of abstraction.
For example, not all semantic connections in the source models are suitable
for automatic transformations [BCT05]. Lack of automatic transformations
is a big problem, since the initial promise of improved productivity is built
on top of automation shoulders. Some researchers overcome this limitation
by extending the base programming language to better accommodate for
model-code interaction [SKRS05].

Another problem identified in the literature is the change in application
structure: with the introduction of models, model transformations and
code generation, the application logic is scattered to various places in the
architecture [SB05]. This is argued to hinder general understandability of

3.2 Model-driven software engineering 39

the system, and thus to hinder maintenance.

Yet another problem is that given the current fast rate of change in
technology choices and architectural evolution in software engineering, the
model transformations provided by the chosen toolset probably do not
match the current architectural needs of the developed software [SB05].
When this occurs, the development team has two choices: try to find an al-
ternative, better suiting toolset or try to improve the existing toolset. The
first option basically stalls development work, as the focus has changed to
finding the right tool for the job instead of actually doing the job. The
second alternative, if viable at all due to copyright reasons, requires spe-
cialized personnel who have the ability to modify the transformations used
by the toolset. Since the development of the actual software cannot be
delayed, the software’s architecture evolves in parallel to transformation
development. This reason gives a good chance that any given set of model
transformations is already obsolete at its completion time.

It is also noted that in practice model-to-model mappings are complex
and require careful design and implementation [BCT05]. While all software
engineering needs careful design and implementation, it seems to be an even
more relevant problem in the context of model-driven software engineering.

In conclusion, given these reasons, unconstrained usage of model-driven
architecture cannot be considered to be a good match for current agile de-
velopment environments. However, we do not propose to canonically reject
software development based on model-driven architecture. Our critique
primarily bases on the combination of short-lived sprints of agile develop-
ment and the uncertainty of toolsets and practices promised by MDA tool
vendors. In cases where a toolset’s abilities and limits are well known in
advance, using the toolset-driven approach can be beneficial even in tightly
time-framed situations.

Support for evolution in model-driven engineering

Support for evolution is often a recurring question in different flavors of
model-driven engineering (MDE). Model-driven engineering is a larger con-
cept than the model-driven architecture discussed in the previous chapter:
MDA refers to the reference implementation that is trademarked by Object
Management Group. Model-driven engineering refers to the general idea of
using higher level models to drive software engineering.

The first rule in the MDE context is that developers are not supposed
to modify the artifacts generated from models [SB05]. This is conceptually
not a new idea, since in the classical edit - compile - run development
cycle, engineers are not supposed to manually modify the assembler code

40 3 Software architectures, models and product lines

generated by the compiler. However, since some model transformations
generate high-level programming language code, it seems to raise some
confusion about the role of the generated artifacts.

Why would there be need to manually modify generated code in a soft-
ware project? The reasons can be manyfold. Examples include the lack of
semantical expressiveness in the source modeling language; non-optimizing
transformations that produce sub-optimal target code with the consequence
of performance problems; or just plain lack of required expertise in the
project personnel.

For any tools that are targeted to real-world use, the need to support
software evolution is not a new requirement. However, tools support this
need using different approaches. For example, the AndroMDA tool empha-
sizes the use of subclassing for modifications [SB05]. This approach follows
the ”Generation Gap” pattern [Vli98, p. 85-101]. In some cases, this can
be adequate, but a number of cases can be identified where inheritance is
not good enough. For example, a study on scalable extensibility presents
cases where inheritance is not a good choice for extending a set of classes
when the corresponding objects interact in a certain way [NCM04]. Other
experts complain about the lack of inheritance expressiveness [Lie86] and
about the potential misuse of inheritance hierarchies [Tai96]. Also, it can be
problematic to use inheritance when reusing and extending interdependent
classes. It can be argued that the class hierarchies become unnecessarily
big if all the generated classes have automatically generated base class, and
the corresponding editable subclass.

In Paper (II) we describe an extension of the Visitor pattern [GHJV95,
p. 331-344] for a set of generated classes. The Walkabout pattern [PJ98]
uses reflection facilities to adjust the orchestration of visited nodes. We
use its more efficient version called Runabout [Gro03] to generate a cor-
responding Visitor base class hierarchy for the corresponding model, and
then rely on the type checking rules in the implementation language for
finding inconsistencies introduced by evolutionary changes in the system.

Although the principle of not manually modifying generated code is
well accepted in general, many researchers in the model-driven engineering
community fail to take evolution into account. For example, a recent study
describes a system for generating web applications based on a self-grown
modeling language [BLD11]. The description does not support further evo-
lution of the system: any changes to the system require a full re-generation
of the produced software. As such, the approach can be classified to fall into
the translationist category of the two model-driven engineering approaches.
However, combined with the lack of expressiveness in the source modeling

3.3 Modeling in agile software process 41

language, the approach runs into problems when using it for any serious
software engineering project.

3.3 Modeling in agile software process

Agile process improvement literature focuses mainly on process-level prac-
tices. Less emphasis is given to the actual software structures that can be
designed in an agile process.

We argue that the classical model-driven architecture’s approach is not
very suitable for agile processes due to its heavy emphasis on tools and
model transformations. Then we argue that agile model-driven develop-
ment cannot be justified from productivity angle, as the lack of formality
in agile models prevents the usage of automated handling. Domain-specific
modeling is seen as a good trade-off between formality and agility, but it is
still staying short of good agility due to its emphasis on specific tool usage.

Agile Model-Driven Development

Agile model-driven development [Amb04b] attacks the problems in model-
driven architecture by relaxing the strong requirements on formality and
tool support. Instead of using complex and extensive models, the approach
emphasizes models that are barely good enough [Amb04a] for a given task.
Modeling is mostly done top-down, although the approach does not exclude
a bottom-up approach.

Figure 3.3: A hand-drawn sketch in agile UML modeling

Figure 3.3 shows an example of a sketch used in agile modeling. Al-
though the attribute names are identical to the platform-specifig model
shown in Figure 3.2, there is subtle difference in this modeling approach
when compared to the previous example. Although the figure has been
produced using a software drawing tool, the emulated hand-drawn style

42 3 Software architectures, models and product lines

suggests that the intent of the model is to enable communication and col-
laboration. This is in contrast to the technical representation used in the
previous example.

According to this philosophy, created models should not affect the
agility principles of a given process. As long as a model can be created
and exploited within a production cycle (usually 1-3 weeks), it is suitable
for agile modeling. This is a promising approach, but it does not state much
about the possible modeling tools - actually, the approach de-emphasizes
the need for tools, and focuses on people.

Due to this requirement, most modeling is based on high-level abstract
modeling languages with little formalism. They are easy to learn, simple
to use and fit well within a given time period. However, they offer more to
easier problem domain abstraction than to automatic productivity increase.
To our best knowledge, no productivity-related empirical validation has
been done for agile model-driven development.

Model-driven architecture is a top-down approach to software engineer-
ing. Due to its heavy emphasis on tools and process, the approach is not
a good fit for agile time-boxed iterations. Light-weight models are often a
better alternative in agile development. Boxes and arrows on a whiteboard
is a good start. However, we argue that in order to realize productivity
gains, these models can and should be brought into software architecture
level entities.

3.4 Software product lines

One answer to demands for easier utilization of software assets in reuse is
the usage of software product lines. In a software product line, the idea is
to organize software development into components that can be combined
in defined, different ways. Domain analysis identifies core assets of a prod-
uct line, which form a software platform. When needed, product-specific
components can be included into a single product [LSR07, p. 6-8].

The aim of a software product line is to be able to support a number of
different software products that share certain commonality between them.
Typical examples of software product lines have emerged in areas of embed-
ded software, such as cell phones [LSR07, Chapter 12] or avionics software
[DBT11].

The starting point for defining the ways of possible combinations is the
modeling of variability. Many variability modeling formalisms are built on
top of feature-oriented domain analysis, FODA [KCH+90].

3.4 Software product lines 43

Modeling variability

Feature modeling [KCH+90] is a formalized way of building option spaces.
The formalism allows to define structures with mandatory features, optional
features and combinations of them.

A canonical example of using feature modeling was presented in [CE00].
The example elaborates on all basic operators in basic feature modeling.
The model defines an option space for a car, which is shown in Figure 3.4.
The car needs to have the body, the transmission, and the engine. The
transmission can alternatively be automatic or manual. The engine can be
electric or gasoline driven, or both. Optionally, there can be a trailer pulling
hook. The original explanation of the formalism is mathematically rigorous.
Fortunately, other introductory texts such as [AK09] kindly remind readers
of the practical implications of the constructs, by associating the words xor
and or to the optionality operators, as shown in the figure.

Figure 3.4: A feature model of a car [AK09]

Given this option space, the following 12 distinguishing configurations
satisfy the model:

1. Transmission: Automatic Engine: Gas
2. Transmission: Automatic Engine: Electric
3. Transmission: Automatic Engine: Gas+Electric
4. Transmission: Automatic Engine: Gas Pulls Trailer
5. Transmission: Automatic Engine: Electric Pulls Trailer
6. Transmission: Automatic Engine: Gas+Electric Pulls Trailer
7. Transmission: Manual Engine: Gas
8. Transmission: Manual Engine: Electric
9. Transmission: Manual Engine: Gas+Electric
10. Transmission: Manual Engine: Gas Pulls Trailer
11. Transmission: Manual Engine: Electric Pulls Trailer
12. Transmission: Manual Engine: Gas+Electric Pulls Trailer

More advanced feature modeling variations allow the use of cardinality
constraints, cross-tree constraints [Bat05], default values [SBKM09] and

44 3 Software architectures, models and product lines

other extensions.

In the example of Figure 3.4, a natural cross-tree constraint could be
that when the trailer pulling option is selected, there needs to be a gas
engine - a pure electric engine would not suffice for the added load of
pulling the trailer. This could be expressed as Pulls Trailer implies Gasoline
Engine. This constraint would rule out the configurations #5 and #11, thus
reducing the number of valid configurations to ten.

The usage of default values allows the model to be augmented with
guides on which values should be chosen if no additional information is
given. In the example, the default values could be Manual Transmission
and Gasoline Engine, which would result the configuration #7 to act as
the starting point of engineering.

The example in Figure 3.4 represents a case where the software’s data
is modeled using feature modeling. However, the internal features of a
software can also be modeled with the same mechanism. For example, the
Linux kernel contains a domain-specific language, Kconfig, for configuring
the features to be used. An example of the Kconfig model is given in Figure
3.5.

The excerpt of the actual kernel file linux-3.6/arch/mips/Kconfig is used
to configure the kernels targeted to the MIPS processor architecture. The
default target is the IP22 prompt, which was used in the once-popular SGI
Indy machines. The alternative in the figure is IP27, which was used in a
later models of Origin 200 and Origin 2000.

This small fragment of the feature model shows how the Kconfig lan-
guage can be used to express alternation (choice), defaults (default), data
types (bool), and cross-tree dependencies (depends) when configuring the
kernel options to be used. The expressive power of the language provides
for feature models with cross-tree constraints and default values [SLB+10].
However, as models in the language are involved with end-user interactive
configuration software, it also contains instructions for displaying user help
texts and other usability aiding tools.

To help in seeing what kind of support variability modeling can bring
for software developers, researchers have started collecting an on-line repos-
itory of published variability models [MBC09]. This repository contains at
the time of writing a collection of over 300 known, published models of
variability in different domains and can be used to get a concrete feeling of
how software variability modeling is currently being done.

3.4 Software product lines 45

config MIPS

choice

prompt "System type"

default SGI_IP22

config SGI_IP22

bool "SGI IP22 (Indy/Indigo2)"

select BOOT_ELF32

select SYS_HAS_CPU_R5000

select DMA_NONCOHERENT

help

This are the SGI Indy, Challenge S and Indigo2.

config SGI_IP27

bool "SGI IP27 (Origin200/2000)"

select BOOT_ELF64

select SYS_HAS_CPU_R10000

select DMA_COHERENT

help

This are the SGI Origin 200, Origin 2000 and

Onyx 2 Graphics workstations.

endchoice

config CPU_R5000

bool "R5000"

depends on SYS_HAS_CPU_R5000

select CPU_SUPPORTS_32BIT_KERNEL

select CPU_SUPPORTS_64BIT_KERNEL

help

MIPS Technologies R5000-series processors.

config CPU_R10000

bool "R10000"

depends on SYS_HAS_CPU_R10000

select CPU_HAS_PREFETCH

select CPU_SUPPORTS_32BIT_KERNEL

select CPU_SUPPORTS_64BIT_KERNEL

select CPU_SUPPORTS_HIGHMEM

help

MIPS Technologies R10000-series processors.

Figure 3.5: An except from the Linux kernel configuration at linux-
3.6/arch/mips/Kconfig

46 3 Software architectures, models and product lines

Implementing variability

Implementing variability in a software product or system has many alterna-
tives. However, before discussing about variability implementation mecha-
nisms, the target of variability needs to be clarified. The model shown in
Figure 3.4 represents a domain-analysis part of feature modeling: it could
be contained for instance in a software system that manages purchase or-
ders to a car factory. Another way of using feature modeling is to model
the software structure, as is done in Figure 3.5.

In Paper (I) we present a case where software variability for different
platforms is implemented by the means of object-oriented interfaces. In
Paper (III) the discussion targets to implementing domain-analysis part of
the model.

On software architecture level, the variability can be implemented with
a number of techniques. Alternatives for implementation include at least
the following:

• conditional compilation

• object-oriented composition

• aspect-oriented composition

• external rules engines

• generative scripting

In the following, we will shortly review these techniques.

Conditional compilation

Conditional compilation, also known as #ifdef s, is a widely used imple-
mentation mechanism of variability. In conditional compilation, the source
code contains various preprocessor directives that are used to select out
some parts of the unpreprocessed source. The variability-processed source
is then fed to the regular compiler.

In the Kconfig context, this works as follows. Each configuration direc-
tive in the Kconfig files is exposed to the preprocessor by setting the CON-
FIG - variables where the name of the configuration directive is appended to
the preprocessor variable name. e.g. CONFIG DMA NONCOHERENT.
Not all configuration directives are used in the source code, but some of
them act as purely variables for guiding the configurational structure. For
example, the SYS HAS CPU R5000 preprocessor variable does not appear
anywhere in the source code.

3.4 Software product lines 47

For example in the Linux kernel 3.6, a part of the file arch/mips/mm/c-
4k.c reads as shown in Figure 3.6.

void __cpuinit r4k_cache_init(void)

{

[..]

#if defined(CONFIG_DMA_NONCOHERENT)

if (coherentio) {

_dma_cache_wback_inv = (void *)cache_noop;

_dma_cache_wback = (void *)cache_noop;

_dma_cache_inv = (void *)cache_noop;

} else {

_dma_cache_wback_inv = r4k_dma_cache_wback_inv;

_dma_cache_wback = r4k_dma_cache_wback_inv;

_dma_cache_inv = r4k_dma_cache_inv;

}

#endif

build_clear_page();

build_copy_page();

coherency_setup();

}

Figure 3.6: Excerpt from the Linux kernel source file arch/mips/mm/c-4k.c

In the excerpt, the DMA NONCOHERENT selection in the configura-
tor tool is shown as a compiler preprocessor directive variable. Choosing
the R5000 processor implies the DMA NONCOHERENT selection to be
chosen as well, which leads to inclusion of the #ifdef part in the actual
compilation cycle. In the case of the R10000 processor, this part is left out.

Using preprocessor directives has been the way to do parameterized
compilation long before software product lines were invented. However,
since conditional compilation is well supported in toolchains and the con-
cept is well understood among software developers, it is an often used tech-
nique for implementing software product lines as well.

On the other hand, the simultaneous handling of configuration time
and compilation time constructs hinders code understandability. Labeled
as #ifdef hell [LST+06], software developed to be parameterized through
conditional compilation is known to be harder to understand than soft-
ware that does not use it. If not attributed by using other implementation
mechanisms, the problem can be relaxed e.g. by improving tool support

48 3 Software architectures, models and product lines

[FKA+12].

Object-oriented composition

In object-oriented composition, interfaces are a natural point of variation.
An interface class represents a variation point, and variability is imple-
mented by changing the concrete implementation of the interface.

In paper (I) we demonstrated and empirically tested an optimizing com-
piler that works on a software product line using interfaces and abstract
classes as the means to differentiate between mobile phone models. In
the research setting, the overhead introduced by object-oriented constructs
was feared to become preventive for employing good software architecture
principles with suitable abstractions.

Some researchers believe that this kind of support for program evolu-
tion cannot be supported in resource-constrained environments [ZHKH07,
ZHK07]. However, this view is based on incomplete understanding of the
application building process: variability that is resolved before deployment
time does not bring any runtime overhead.

Aspect-oriented composition

In aspect-oriented programming [KLM+97], the base software augmented
with optional aspects. Specific weaving expressions that define the joining
points are used to guide where the optional aspects should be inserted at
compilation time or at runtime.

These join points can be used as the variation points: when an op-
tional feature should be present by the product line configuration, the cor-
responding aspect is woven to the base software. Examples of this kind of
implementation can be found at [AM04] and [GV09].

External rules engines

In some cases, the software product line is not implemented in the core
software’s architecture at all. Instead, the variation is outsourced to an
external rule engine: all variation is expressed by changing the rules in the
engine.

This approach has the benefit of moderating the changes to software
architecture required by different customers and variations of the software.
All the changes are encapsulated to their own environment.

The drawback in this approach is that the degree of variation is limited:
the number of variation points is limited to the points where the base
software transfers control to the external engine. Variation obviously is not

3.5 Self-organizing and self-configuring software architectures 49

a first class entity in the architecture. Also, the question of how well the
external engine supports variation is not answered in this approach: should
the rules in the engine follow some variation approach presented in this
chapter, or is all the variation implemented using ad hoc implementation
techniques?

Generative scripting

Generative scripting is another approach to implementing product lines. In
this approach, the idea is to use a higher level model as the product line
definition. Scripts are then used to generate corresponding lower-level code,
very much in the style of model-driven engineering presented in Section 3.2.
Much of the discussion from that section applies to using models to drive
software product line engineering as well.

An example of this kind of architecture is the generation of the NH90 he-
licopter product line, which has customers in several countries and military-
grade restrictions in letting one country’s version to interact with another
country’s version [DBT11]. In this environment, the big boost for pro-
ductivity is the standard certification requirement in the avionics software
development. In avionics software development, the created software needs
to be certified by aviation authorities before it can be included in a type-
certified aircraft. Standard object-oriented techniques, such as dynamic
dispatching based on late binding, are known to be problematic to get cer-
tified due to their unknown runtime properties. In the NH90’s case, the
developers were able to certify the code generating Perl script as a way to
do static dispatching at development-time binding.

3.5 Self-organizing and self-configuring software
architectures

Both model-driven engineering and software product lines are approaches
to resolve problems introduced by software variation. Variability can hap-
pen over time – i.e. software evolution – and over different contexts, such as
variations tailored to different customers or product models. These tech-
niques can help to manage the complexity introduced by variability, but
many open problems still reside.

Self-organization is a way to reduce or minimize the need of explic-
itly managing the organized elements. For software architectures, self-
organization has been applied in context of dynamic component discov-
ery [MK96] and distributed systems development [GMK02] while ensuring

50 3 Software architectures, models and product lines

overall system structure consistency.

In this thesis, we propose that using self-organizing software architec-
tures is a way to improve productivity and maintainability. These goals
are even more important when addressing problems in several different
contexts. For example, feature interaction is a core problem in software
product lines: how to understand program behaviour in all possible config-
urations in different contexts and how to make sure that the chosen features
do not interact in a wrong way.

However, using self-organizing software architectures is not limited to
software product lines. They can be used, in general, as a simplifying
technique for the architecture. Since the self-configuring components can
be used to remove or reduce duplication, the architecture of a software
becomes simpler. Before giving examples of how this is done, we will review
what is meant by self-configuring software components and self-organizing
software architectures.

Various kinds of self-something properties have been described for soft-
ware systems. For a compact review, a dissection of the different self-*
properties can be found in [BG09]. For our discussion, the definitions for
self-organizing and self-configuring are the most interesting ones.

For self-organizing systems, a few different definitions exist. Anderson
et al. define self-organization to require the system to maintain, or mono-
tonically improve a function value involving the neighbors of the joining or
the departing process in-between process joins and leaves [ADGR05]. Asso-
ciated properties of self-organization are that the self-organization should
happen in sublinear time and process joins and leaves should cause only
local changes [DT09].

Now the question is that how does this relate to software architecture?
Some parts of distributed software are targeted to handling process joins
and leaves, but certainly it is in the core of software architecture only in few
of the above mentioned definitions. To transfer these process-centered defi-
nitions, we should focus on the concepts in the software architecture: com-
ponents, structure, design, constraints, properties and their relationships.
For an architecture to be self-organizational, there should be a mechanism
for maintaining or monotonically improving the software when new archi-
tectural elements are added, or old ones are removed or modified.

Self-configuration of a software system, in turn, refers to the ability to
”change its configuration to restore or improve some [safety] property de-
fined over configuration space” [BG09]. When comparing self-configuration
and self-organization, the former requires the system to change its config-
uration when restoring, maintaining or improving some property of the

3.5 Self-organizing and self-configuring software architectures 51

system after a change. The latter handles joining or removal of archi-
tectural elements. Thus, it follows that every self-organizing system is
self-configuring, but the reverse is not true [BG09].

When discussing the joining and leaving of architectural elements, we
need to think about the binding time of decisions. A usual division of
binding times is to talk about design-time, coding-time, compilation-time,
deployment-time and runtime decisions. For example, overall architectural
design is clearly a design-time decision while the dynamic binding of method
calls in an object-oriented language is a runtime decision. Choosing the
database connection parameters is a typical deployment-time decision and
tuning of the database engine to perform with a given workload is often
runtime work.

Another dimension to the discussion is the amount of human interac-
tion needed for making these decisions: fully automated decisions can be
made without human intervention – but often, some kind of human inter-
action is needed. For example, in the world of refactorings [Opd92] we
can see a continuum from manual refactorings to automated refactorings
[KEGN01]. To be able to safely make automated decisions, they need to
be formally specified: under certain conditions, a certain refactoring can
be made. Stricter formality requirements lead to limited applicability, and
often to a local scope. On the other hand, the amount of possible collateral
damage is also limited. In manual refactorings, there is high possibility for
collateral damage, but they can be widely applied and the human opera-
tor (the programmer) can use human judgement to make global changes.
Often a high cost is involved due to high wages of programmers, at least
when compared to electricity price. When the refactoring steps cannot be
specified with enough precision, maintenance patterns [HH04] can be used
to give the maintenance programmer some guidance on the workings of the
system.

Figure 3.7 shows a few approaches on formality and binding time axis.
Self-organizing software architectures are such software architectures that
can adjust their functionality to changes in the architecture, such as adding
or removal of components in the software. By definition, self-organization
happens at late binding time: adjustments to the architecture at design
and coding time are refactorings rather than examples of self-organization.

Application-level self-organization can be implemented by using self-
configuring components. A self-configuring component contains program
logic for adjusting the functionality of the component according to its local
environment. In Paper (V) we show an example of a self-configuring com-
ponent of database queries. Without such self-configuring component, the

52 3 Software architectures, models and product lines

Fo
rm

al
ity

Binding time

Fully
automatable

Human
decision
involved

Design
time

Coding
time

Deployment
time

Runtime

Manual
refactoring

Automated
refactoring

Database
tuning

Maintenance
patterns

Self-organizing
software

Compilation
time

Figure 3.7: Chart of formality and binding time applicability of different
modifications

database querying layer would need its own components for all database
query contexts. These can be replaced by one self-configuring component
which adjusts its functionality according to each context, thus simplifying
the architecture.

These kinds of improved modularity and maintainability properties are
useful in all software engineering, but they are especially useful when the re-
sulting software experiences regular modifications, e.g. as is done in model-
driven engineering when changing the model and in software product lines
when deriving different variations out of the product line.

When designing a self-configuring component, the implementation needs
reflectional access (self-description) to the context that the component is
adjusting itself to. When the access is implemented via source code or
other low-level access mechanisms, it can become cumbersome to design ef-
ficient self-configuration. If the accessed software exposes its functionality
in higher level models, this task can become easier. In the next chapter we
will explore bottom-up modeling, which can be used to overcome an often
experienced conflict between high-level models and low-level implementa-
tion details.

Chapter 4

Bottom-up modeling

Model-driven architecture in its various forms gives a principle for increas-
ing software development productivity by raising the level of abstraction.
Model-driven development concentrates on models of the domain, thus al-
lowing developers to concentrate on the actual domain instead of fighting
against the compiler on the programming language level. However, tra-
ditional model-driven approaches are rather heavy-weight, as they require
intensive support from various tools before meta and meta- meta-level con-
structs are defined precisely enough to be used. The end result appeals
to architectural enthusiasts, also known as architectural astronauts [Spo04,
pp. 111-114], but is seldom good enough for real software development.

The following sections are organized as follows. Section 4.1 briefly dis-
cusses why top-down modeling is problematic, especially in agile context.
Section 4.2 represents the alternative: modeling in a bottom-up way. Sec-
tion 4.3 explains the bottom-up modeling concept with an example in con-
text of building a data model for general aviation maintenance application.
Section 4.4 discusses when the bottom-up modeling approach is applicable
in software development. Section 4.5 reviews related work.

4.1 Problems of top-down model engineering

When starting modeling in a top-down fashion, it is often unclear whether
the chosen modeling formalism can handle the task. If the formalism is too
weak, modelers cannot express their intentions well enough. For example, in
a critique of MDA, researchers found out that plain UML is not expressive
enough for software development. Tools use vendor-specific profiles, which
limits interoperability and can cause vendor lock-in [SB05]. On the other
hand, if the formalism is too strong, it is probably also too complex. This

53

54 4 Bottom-up modeling

steepens the learning curve and makes modeling less lucrative.

The top-down approach assumes a complete and correct understanding
of the system being developed. This is seldom the case in software devel-
opment. An early advice for software engineering once stated that build
one to throw away [Bro95]. Following this route can help in building un-
derstanding of what is needed to build the system. Unfortunately, with
the current demands of faster time-to-market, only few teams can afford to
spend extra time in the beginning to build something that is going to be
thrown away anyway.

Another problem is that with the top-down approach, the referred de-
signs are treated as ’black boxes’ that are to be further specified and de-
veloped in the following step-wise refinements. The black boxes may fail to
clarify the internal workings of fundamental elements in the lower abstrac-
tion level [EHS10, p. 34]. For an uninitiated designer, the seemingly simple
structure can then turn out to be unimplementable at the lower level.

4.2 Bottom-up model-driven engineering

To overcome difficulties with the top-down approach, it is often possible to
change to a bottom-up approach. Traditional model-driven engineering is
essentially a top-down method, which recursively decomposes the problem
to smaller pieces, until any given piece is small enough to be solved with
available tools. The alternative to top-down methods is to use a bottom-up
approach which identifies smaller sub problems and develops solutions to
these. When this cycle is repeated, gradually the solution for the whole
emerges. Given a problem domain, the bottom-up approach identifies sub-
domains that are amenable to modeling.

Bottom-up model driven development [BS13] recognizes the problems
of working with abstract artifacts that hide the concrete results of the mod-
eling work. They propose to change the point of view from fully synthesiz-
ing model-driven software development to use partial models and partial
synthesis. Where-ever a model is recognized to be useful, based on un-
derstanding gained from working with concrete code elements, higher level
models can be developed. Since the models do not comprise the whole
software, the generated code is also based on partial synthesis.

Agile bottom-up modeling constrains the model identification process
to such tools and techniques that can be applied in an agile process model.
The application of bottom-up modeling is thereby limited to a small number
of tools, which can be evaluated and applied within a tightly time-boxed
iteration. Yet, although this search-and-discover approach theoretically

4.2 Bottom-up model-driven engineering 55

produces non-optimal solutions, it guarantees that progress is not stalled
while searching for the optimal solution. This way, a bottom-up approach
to modeling can avoid the heavy up-front planning phase associated with
traditional model-driven engineering. The need to build complex modeling
languages with associated tool support can be avoided or the impact of the
tool-building effort can be damped to be included within the time-boxed
sprints. To further help, existing languages can be reused or a domain-
specific modeling tool can be used. The obvious downside of the approach
is that repetitive application of ad-hoc modeling constructs might gradually
erode the software’s overall architecture.

The main message with bottom-up modeling is to constantly look for
sub-domains that are amenable to lightweight formalization. Crafting meta-
models and tools for such a small domain is definitely easier than building
an all-inclusive supermodel of the whole world, which is argued to be needed
in the case of top-down model-driven engineering [BJV04].

We argue that productivity gains chased with model-driven engineer-
ing should be combined with agile development models by examining the
productivity problems that are encountered on project level. If a given pro-
ductivity problem gives a feeling that its root cause is associated with the
problem of lack of abstraction, or incorrect level of abstraction, then that
particular part of the software could be a possible candidate for building a
higher level model.

We call this approach as bottom-up agile model-driven development
(BUAMDD). In this approach bottom-up models are a way to introduce
light-weight (possibly formal) modeling to an agile development process.

Traditional model building deals with object-oriented models, repre-
sented in the source code using the implementation language’s abstraction
mechanisms. The Model-View-Controller [Ree79] design pattern, maybe
decorated with the Fluent Interfaces pattern [Fow10], is a classical exam-
ple of this approach. The problem with object-oriented modeling resides
in the lack of increased abstraction: the level of handling is essentially the
same as the implementation language’s level of abstraction – and breaking
the productivity barriers induced lack of abstraction is the primary reason
for applying formalized modeling.

An essential requirement of bottom-up modeling in an agile project is
that the building of model languages and models can be decomposed into
sprintable form. We mention both model languages and models because
the essence of bottom-up modeling is to find suitable abstractions to the
problem at hand, and often this means inventing a new language or reusing
an existing language for modeling. This notion is contradictory to the com-

56 4 Bottom-up modeling

mon wisdom of using the best existing tool for the job at hand. However,
given the large number of different tools and techniques available on the
market, it is not possible to carry out a thorough tool evaluation within
the time frame of an iteration. For this reason, agile teams often need to
build their own abstractions for modeling.

These abstractions or languages are not necessarily complex, meaning
that there is no mandatory need to building complex modeling languages
with associated tool support. Instead, existing languages can be piggy-
backed and reused as is common with domain-specific languages [MHS05].
Preliminary research shows that this can be the most efficient way to im-
plement domain-specific languages [KMLBM08], meaning that it can be
a good fit in an agile environment. Also a domain-specific modeling tool
can be employed, once an initial understanding of the problem at hand has
emerged.

Bottom-up modeling does not limit the format of source models, as long
as they are expressible in machine-readable form. This means that the
modeling language does not need to be a graphical boxes-and-arrows -type
tool. Actually, although the traditional boxes-and-arrows kind of modeling
can be beneficial in the drafting board, the lack of exact interpretation for
the used symbols hinders productivity when forwarding these models to
any type of automatic code generation or runtime interpretation.

External domain-specific languages are often used, but an interesting
alternative is to use the source code as the source model. In practice,
this option is viable because using the source code as the source model for
further transformations increases robustness against modifications into the
software. This option is investigated further in Chapter 5.

4.3 An example

In order to illustrate the idea of using the bottom-up approach to modeling,
we build an example case of a general aviation operations software. In this
example, we have a hypothetical aircraft operator who wants to improve
its business efficiency by building an operation supporting software suite.
The software suite handles various aircraft of different type that are being
operated by this business. In the first iteration, we build the data model
for the aircraft database. In a subsequent iteration we then build a new
module for handling different configurations of individual aircraft.

Although this section carries on with the motivational example, we refer
to essential literature along the discussion.

4.3 An example 57

Data modeling

Data modeling is often at the very core of enterprise applications. Data is
stored into a database, and is retrieved from there for viewing and further
modification. With this background, it is not surprising that class diagram
is the most often used diagram type when modeling data with UML [DP06,
FGDTS06].

Our approach to this problem is to exploit the nature of bottom-up
problem solving. Re-using the notion of piggy-backing existing languages,
we can choose to use e.g. XML schema [TBMM04] for data modeling. For
example, the XML schema definition for the data model of an engine type
that we are interested in could be as shown in Figure 4.1. This presentation
is prettified: the actual syntax is not this clean. In practice, the IDE
handles a lot of the inconvience presented by the cluttered syntax.

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:dsm="http://acmebar.com/DomainSpecificSchema">

<xs:annotation>

<dsm:engine name="O-320" />

</xs:annotation>

<xs:element name="OverhaulInterval" type="xs:duration"

fixed="P2000H"/>

<xs:element name="LastOverhaulTime" type="xs:date"/>

<xs:element name="CurrentRunningHours" type="xs:integer"/>

</xs:schema>

Figure 4.1: Data model for example engine O-320 presented in the XML
Schema language

Here we define an engine model O-320, which is the normally aspi-
rated, air-cooled, carbureted four-cylinder boxer engine manufactured by
Lycoming. As a link to the surrounding software, we annotate the schema
file with our own, domain-specific schema annotation of dsm:engine. The
standard data modeling part is done in the XML Schema namespace xs.
The engine overhaul interval is defined to be a duration of 2000 hours in
the field OverhaulInterval using the notation P2000H, meaning a period
of 2000 hours, as specified in the XML Schema language. Finally, the two
fields available to engine instances are LastOverhaulTime and CurrentRun-
ningHours, for recording the time of the last overhaul and the number of
flown hours since the last overhaul.

58 4 Bottom-up modeling

In top-down engineering, using a predefined data modeling language
has the consequence of a need to implement corresponding support for the
language at the implementation level. For example, UML does not provide
a concise way of defining the simple options modeled in the XML schema
document above. By using an existing language, with known implementa-
tions, the implementation part is easier since the modeling language already
defines the available data types [BM04].

With this approach, the data modeling is done by defining XML Schema
models. The expressive power of the schema language greatly overpasses
the one offered by standard UML class diagrams [MNSB06]. Another ben-
efit is that standard XML tools can be used to validate data transmissions.
The semantics of the XML Schema language is well understood. As a formal
language, the source documents can also be used for further model trans-
formations; the schema language contains a well-defined variation point
holder for defining new features for the data modeling tool.

Similarly to traditional model-driven engineering, the data model can be
a subject to model transformations, for example to define the corresponding
database creation clauses as shown in Figure 4.2.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema>
 <xs:element name="Name" fixed="O-320" />
 <xs:element name="OverhaulInterval" fixed="P2000H" />
 <xs:element name="LastOverhaulTime" />
 <xs:element name="CurrentRunningHours" />
</xs:schema>

Transform2DDL

CREATE TABLE O320 (
 ID INTEGER primary key,
 CREATION TIMESTAMP not null,
 NAME CHAR(5) not null,
 OVERHAULINTERVAL INTERVAL not null,
 LASTOVERHAULTIME DATE,
 CURRENTRUNNINGHOURS INTEGER
);

Figure 4.2: Transformation from XML schema to SQL DDL

However, the use of the model is not limited to development time trans-
formations. Since the model is expressed in programmatically accessible
form, it can also be used to drive e.g. user interface generation and input
form validation at runtime.

In Section 3.2 we argued that the limited extensibility of UML class
diagrams is a problem for developing domain-specific semantics. In this
approach, this limitation can be relieved. The XML Schema language con-
tains a specifically designed variation point place in the annotation field.
This can be used to elaborate the model with arbitrary extensions, based
on domain-specific needs.

However, the approach is not without downsides either. We argue that
the predefined set of data types is good for implementation. Now the
question is what if these data types are not good enough for the given need?

4.3 An example 59

At that point the implementation runs into the same problem as when
using the top-down approach; the situation needs to be handled separately.
Fortunately, given the stronger expressiveness, this case does not happen
as often and therefore is less problematic in practice.

Feature modeling

For our discussion, the interest lies in how to implement functionality to
handle these kinds of models. In model-driven architecture, the standard
approach is to use transformations to bring the source model into the
streamline of standard modeling languages. Thus, a transformation for
translating the feature model into an UML model is needed. Literature
presents various ways for doing this. Several researchers [CJ01, Gom04,
GFd98, CCC+11] have presented different flavours of using stereotypes for
representing variability in UML. [VS06] suggests that changes in the UML
metamodel are needed to fully support variability.

These studies contain many fine points for implementing beautiful mod-
els of variability using the standard technologies. However, for practical
software development cases, variability is just one of the dozens, hundreds
or thousands issues that a development team needs to tackle. It can be
impractical to start discussing about the academically correct way of im-
plementing this variability, since it can be hard to demonstrate how this
discussion brings value to the end customer. Due to the economic reasons
discussed in Section 2.5, it probably never will.

An alternative is to work with this specific problem, using the standard
tools offered by the implementation environment. For the variability ex-
ample, in Paper (III) we have documented a way of using standard regular
expressions for modeling variability. This approach tries to combine good
parts from both formal modeling and agile product development. The ap-
proach has the benefit that the customer can be shown steady progress,
since modeling is concentrated on small subdomains. On the other hand,
since the models are implemented using the standard implementation en-
vironment structures, the mismatch between modeling environments and
implementation is kept at minimum.

In our example, next we define the semantics of the software concept
aircraft. As an implementation vehicle, we use regular expressions to define
the variability model as shown in Figure 4.3. In this definition, we define
what different parts can form an airplane. The definition reads as follows:

• The fuselage can be either pressurized or unpressurized.

• There are always two wings, the empennage and the tail.

60 4 Bottom-up modeling

• The propeller is either a fixed pitch or variable pitch.

• The engine type is one of: O-320, TSIO-360 or TAE-125.

• There can be up to 3 radio (COM) units, each with the optional VHF
navigation (NAV) ability.

• There can be navigation equipment group for automatic direction
finder (ADF), distance measuring equipment (DME), VHF omnidi-
rectional range (VOR) and global positioning system (GPS).

• The avionics is either the traditional six-pack avionics or a glass-panel
G1000 model.

• The landing gear can be either conventional or tricycle.

• The landing gear can optionally be a retractable undercarriage.

aircraft consists of:

(pressurized | unpressurized) fuselage

left wing right wing empennage tail

(fixed pitch propeller | variable pitch propeller)

(O-320 | TSIO-360 | TAE-125) engine

(no | (COM NAV?){0-3}) radio

(no | (ADF | DME | VOR | GPS)+) navigation

(G1000 | traditional) avionics

(conventional | tricycle) gear

(retractable undercarriage)?

Figure 4.3: Variability model of aircraft

In the case of radio and navigation equipment, there is the option of
the aircraft not having any of these: in that case the ’no radio’ and ’no
navigation’ options are chosen. Each of these elements can contain the cor-
responding data model definition. For example, the data model definition
for the engine O-320 was given in Figure 4.1.

This is a very concise way of using higher level abstraction to bring
benefits of modeling into implementation level. For example, if we want
to validate a given aircraft configuration, we can feed the proposed config-
uration to a regular expression matcher, which is available in all modern
programming languages.

However, using this kind of modeling language specific translation to
the implementation language raises some questions. For example, many

4.3 An example 61

feature modeling formalisms allow the definition of cross-tree constraints.
In the example model, we could not specify the linkage between a VHF
omnidirectional range equipment and a navigational radio. In a general
aviation aircraft, the VOR display receives navigational signals from the
NAV radio. If the aircraft does not contain a NAV radio, the VOR dis-
play cannot function either. When using regular expressions to represent
feature models, these kind of cross-tree constraints are problematic. Many
programming language implementations offer the use of back references
that can be used up to some degree. Another option is to implement the
cross-tree constraints in general programming language code. One of the
main ideas in BUAMDD is to iteratively find the optimal, desired balance
between the models and the code.

Using UML models gives the possibility to scale the scope of modeling
to include also the attributes of modeled entities, for example, if there is
a need to specify the size or power of the engine being modeled. In a
class diagram, it is very straightforward to add the attribute in question
to the class model. But using regular expressions to model even five to
ten different engines would soon prove to be cumbersome. However, this
does not mean that we could not extend our little language to a bigger
one. Quite the contrary: when we identify the need for such a semantic
extension to regular expressions, we can choose to adopt e.g. attribute
grammars [Paa95] to handle our increased needs.

How in practice that extension would be implemented depends on the
environment and individual preferences of the designer. In Section 3.2 we
discussed the difference between internal and external modeling. Using
an external modeling with a dedicated generator/extension suite, such as
JastAdd [EH07] could be a good choice in a Java-based environment. If
the operating environment happens to have a good support for internal
implementation of attribute grammars, such as the Kiama library in a
Scala environment [SKV11], the lightweightness of a pure embedding could
work well in practice.

Emerging modeling support

This way, bottom-up modeling can use a mix-and-match approach for se-
lecting the suitable tools for situations rising in development projects. In
the example in this section, the developers chose to use regular expressions
for modeling variability and the XML schema for data modeling. Combin-
ing these two allowed the developers to use models as first-class artefacts in
their product, since both of the used modeling languages were supported
in the programming environment. Equally important, the developers were

62 4 Bottom-up modeling

able to show steady progress towards the customer, since there were no
delays due to the team doing tool evaluations and comparisons.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:dsm="http://acmebar.com/
DomainSpecificSchema">
 <xs:annotation>
 <dsm:engine name="O-320" />
 </xs:annotation>
 <xs:element name="OverhaulInterval"
 type="xs:duration" fixed="P2000H"/>
 <xs:element name="LastOverhaulTime"
 type="xs:date"/>
 <xs:element name="CurrentRunningHours"
 type="xs:integer"/>
</xs:schema>

aircraft consists of:
 (pressurized | unpressurized) fuselage
 left wing right wing empennage tail
 (fixed pitch propeller | variable pitch propeller)
 (O-320 | TSIO-360 | TAE-125) engine
 (no | (COM NAV?){0-3}) radio
 (no | (ADF | DME | VOR | GPS)+) navigation
 (G1000 | traditional) avionics
 (conventional | tricycle) gear
 (retractable undercarriage)?

data modeling

va
ria

bil
ity

mod
eli

ng
data

modeling +
variability
modeling

Figure 4.4: Combining two modeling languages

Figure 4.4 shows a conceptual picture of the idea of combining two
modeling languages into a meaningful entity. On the right hand side, the
schema language defines the data model, and on the left hand side, the
variability is modeled using regular expressions. In the middle, these chosen
modeling formalisms are merged to a meaningful whole. Should further
modeling needs emerge, the structure is open for extension by new modeling
formalisms and their combinations.

In Paper (III) we have documented a case of using bottom-up modeling
to build a telecommunication provisioning software product. A crucial fea-
ture of the developed software was to ensure that only valid combinations of
network services were provisioned to the network. We used piggybacking on
the regular expressions language to build a validator for checking whether
a given combination of telecommunications network services is valid. This

4.4 When to use bottom-up modeling 63

solution can be characterized as a use of a specialized expression language
to handle the network models in format of regular expression, but using spe-
cialized semantics of feature-oriented domain expressions. This was driven
by a feature model, which was used to configure the network service com-
bination validator.

In another part of the software, each of the network services’ internals
were implemented using XML Schema. Again, we used piggybacking on an
existing, well-documented language as a base formalism. The user interface
on the product was built based on the model expressed in XML Schema;
and user input validations for each specific service were partly implemented
by using out-of-box XML validator tools.

4.4 When to use bottom-up modeling

Although we have shown a few cases where bottom-up modeling can be
used, it should not be considered as the silver bullet to software engineer-
ing problems. Introducing new abstractions always creates initial mental
burden to developers and raises the barrier of entry to newcomers into the
project. Users of this approach should be aware that they have a home-
grown, ad hoc modeling environment, which can cause problems when new
people are introduced to the project and/or when the project transits from
development to maintenance. For these reasons, it is worthwhile to care-
fully analyze whether the increased complexity on modeling level can be
justified by savings in implementation, documentation and maintenance.

In general, the use of bottom-up approaches involves the drawback of
having limited overall vision [EHS10, p. 34]. Since each component is
specified and implemented in its own sandbox, there is no overall guid-
ance on how the models should be formulated and whether the models can
seamlessly interoperate with each other.

The strength of bottom-up modeling lies in the ability to flexibly adopt
suitable modeling tools by embracing new formalisms or by extending exist-
ing, well-known formalisms. When the programming environment supports
the formalism, such as regular expressions, it can be lightweight to add a
new way to use modeling formalism, since there is no requirement for overall
structure changes. Also, existing formalisms can be extended or adjusted
as needed.

However, if these features are not needed in a project, it is not wise to
use bottom-up modeling. For example, if the project already has deployed
a suitable MDA toolset that supports all the required technologies and has
enough expressiveness for the needs of that project, then there is no need

64 4 Bottom-up modeling

for the added flexibility and extensibility. Project personnel’s (dis-)ability
can also be a barrier to adoption: if the project staff does not include
personnel with sufficient theoretical knowledge, it can be hard to introduce
any improvements.

Another case when bottom-up modeling should not be employed is when
the given environment already supports modeling and/or implementation
work on sufficient level. For example, in Paper (IV) we show a case of
building self-configuring user interface components using Java Server Faces
(JSF) [HS07], the standard user interface building technology for Java En-
terprise. JSF offers good support for modeling page navigation, i.e. the
transitions between different pages in a web application. In that case, it
would not be useful to re-invent a new modeling mechanism for handling a
case that is already supported by the environment. In general, when given
a problem, it is a good idea first to evaluate whether it can be solved by
your existing tools: don’t reinvent the wheel just because you can.

Designers need to be aware of the fact that after building a bottom-up
modeled solution, they have a homegrown, ad hoc modeling environment.
Meticulous attention is needed to be prepared to refactor back to main-
stream technologies. In the case of refactoring, the good news is that there
already is an implemented set of models and an idea of semantics of ar-
tifacts in your model. It might be that these models can automatically
or semi-automatically migrated to the mainstream solution. For example,
many automated tools can transform XML schema documents to UML.

4.5 Related work

Other researchers have also proposed various forms of composing software
components in a bottom-up way. In this section, we review some rela-
tives to bottom-up modeling, namely the framelet approach to framework
construction and the aggregation of modeling languages.

Frameworks and framelets

The quest for finding reusable solutions to building software has resulted
in an uncountable number of frameworks being developed to all possible
software domains. The main idea in a software framework is to collect
an abstract design of a solution into a coherent set of classes, providing
the desired service [JF88]. When the framework needs to be varied, it is
done by parametrizing the framework with situation-specific classes that
the framework calls at specified points. This is called inversion of control,
or the Hollywood Principle of ”do not call us, we will call you” [Swe85].

4.5 Related work 65

Using frameworks to build software is essentially a top-down approach:
the framework defines the overall structure (top) and the application devel-
oper fills in the missing pieces by providing his own classes (down). When
the framework supports the task at hand, this can be a good boost for
productivity.

However, in practice we seldom find frameworks that fit exactly to the
task and environment [Cas94, MB97, KRW05, LATaM09]. Instead, soft-
ware is typically composed from a number of frameworks, each handling
different domains of the software. A basic web application can contain
frameworks for HTTP communications, user interface building, security,
and persistency just to name a few. When each one of these wants to be
the one who defines the control, problems are bound to be born.

One solution to this problem is to source full application development
stacks instead of individual frameworks with the presumption that the stack
developer has a thought out framework hierarchy to provide a consistent
functionality. The downside is that the scope of a software stack is even
more focused that of the individual framework’s.

A bottom-up alternative can be called framelets [PK00]. A framelet is
a small solution to a specific problem that does not assume main control
of the application. Framelets have a defined interface, and they provide
variation points for application-specific functionality. They can be seen
as a midway between framework-related design patterns and full-fledged
frameworks.

Domain-specific modeling

Domain-specific modeling is an activity of recognizing the relevant entities
of the problem domain and to use a dedicated editor to model the software
system’s behavior, by the terms used in the domain [SLTM91, KT08]. On
surface level, it might seem that bottom-up modeling is the same approach
as domain-specific modeling. However, a number of differences exist.

First of all, domain-specific modeling is a tool-specific activity. The
principle is to use a special tool for crafting models that precisely describe
the target domain. Introducing new tools to a project can sometimes be
problematic for many reasons. Sources of problems can be in the areas of
compatibility to existing toolset, licensing politics, and increased complex-
ity to understand the new tool, to name a few.

The bottom-up approach, on the contrary, can be applied without ex-
ternal tool support, as was shown in the example in Section 4.3. However,
evidence from previous experience, such as the case reported in Paper (III),
suggests that a home-grown modeling language introduces its own com-

66 4 Bottom-up modeling

plexity. In this case, when the number of modeling elements grew over 20,
developers would have benefited from improved tool support. Thus, these
models without tool support should probably be used only for prototyping
and for bootstrapping development.

Second, domain-specific modeling concentrates on specialized models
that are positioned in the target domain. The aim is often to help non-
project people to comprehend the models and to allow better collaboration
between technical and non-technical people. In contrast, in bottom-up
modeling the idea is to find existing, general-purpose formalisms. Rather
than giving tools to the customer, as is done in domain-specific modeling,
the idea is to give tools for efficient implementation of target domain con-
structs. However, these models can be used to communicate to non-project
people as well. Depending on the communication target, prettifying trans-
formations to simplified graphs and reports can prove to be beneficial.

Aggregated modeling languages

While framelets are an answer to modeling the structure of a software in a
bottom-up way, they do not cover data and functionality modeling. Other
research has concentrated on reusing existing computational formalisms to
build complete modeling environments. Combining aggregated modeling
languages from a set of base formalisms, using automation to produce a
coherent modeling environment, is a related concept [LV02].

Using these ideas, a demonstration of building an Android application
from a set of base formalisms has been done. The base formalisms in-
clude modular definitions of the execution platform’s properties, such as
the device’s features and screen navigation model, and the application’s
functionality model encoded in a state chart. These models are combined
to produce a complete application that is executable on the corresponding
mobile device [MV12].

Chapter 5

Programs as models

In the previous two chapters we discussed the notion of models in soft-
ware engineering. We distinguished external models, where the model is an
external entity to the software, from internal models, where the model is
placed inside the software by terms of object-oriented modeling, language
binding, or by other means. In this chapter, we further extend the notion
of internal modeling to include also the software itself. We do this in order
to show how it can be beneficial to create internal model-driven transfor-
mations in order to build resilient software that is easy to change since the
resiliency features reduce the effort needed in updating software’s internal
dependencies in case of changes.

In Section 5.1 we discuss metaprogramming and generative program-
ming as tools of building resilient software. Section 5.2 views program an-
notations as hooks for attaching external semantics to program fragments.
Section 5.3 extends the notion of software models to include the software
itself as a model. Section 5.4 reviews related work to the idea of regarding
software code as the model in model-driven engineering.

5.1 Metaprogramming and generative program-
ming

In advanced software engineering, experienced programmers use metapro-
gramming and generative programming as their tools. Generative program-
ming is a discipline of creating programs that produce other programs as
their output. The term metaprogramming refers to the task of creating
programs that use and modify other programs as their input and/or out-
put.

Many authors in the literature claim that efficient use of these tools is

67

68 5 Programs as models

the key to enormous gains in productivity [TB03, BSST93, JJ05, SS03]. For
example, it is claimed that the success of the first commercially successful e-
commerce web-based startup company, Viaweb, is mostly explained by the
use of the LISP programming language and its metaprogramming facilities
[Gra04].

LISP is an example of language that has a low barrier for metapro-
gramming. It is a homoiconic language, meaning that the programs in the
language are represented as data structures in the language itself, using its
native data types. This property has made it natural for LISP programs
to generate parts of the program at runtime.

In non-homoiconic environments, the means of metaprogramming vary
from environment to environment. Many modern languages provide some
support for computational reflection, meaning that programs can access
their structure and execution state through a reflectional interface. When
the program only observes its structure and state, it is called to be an
introspective program. If the program also modifies its structure, it is said
to be an intercessing program. Both of these reflectional ways require that
the program’s structures are reified for runtime access.

When the environment (e.g. programming language) lacks proper sup-
port for computational reflection, program designers have developed a num-
ber of techniques to overcome the limitations of the environment. For exam-
ple, implementing automated memory management in systems not natively
supporting such notion is a good example.

Automated memory management

Automated memory management is a term for employing techniques that
allow the program to be designed without explicitly considering the memory
allocation and deallocation sites in the program flow. Often, the use of au-
tomated memory management causes certain runtime overhead. However,
since manual memory management is error prone and tedious, automated
memory management can provide more a secure way to manage allocations
and de-allocations. In many business sectors programmer productivity is
of higher importance, and thus automated memory management gets de-
ployed to practice.

Software engineering wisdom states that in order to build complex sys-
tems efficiently, the two most important issues to handle are abstraction
and modularity. A given system can be decomposed into modules using
different criteria, each decomposition resulting in different properties for
performance and maintainability [Par72]. Researchers in garbage collec-
tion techniques argue that explicit memory management is an unnecessary

5.1 Metaprogramming and generative programming 69

burden in many cases. The unnecessary book-keeping of low-level memory
structures detains the focus from more relevant parts of the code [JL96, p.
9-11]. In other words, the manual book-keeping of memory references in-
troduces internal dependencies that violate the modularity aspects, which
in turn makes the software less maintainable.

There are many ways to achieve automated memory management in a
software system. A common approach is to use a separate thread of execu-
tion inside the virtual machine executing the code. The garbage collection
thread maintains a list of referred objects, and whenever it is evident that
a certain object cannot be accessed or will not be accessed in the future
execution, the space used by the object is freed. This is the model used by
many current virtual machine based execution environments, such as Java
and C#.

However, in other environments some other techniques can be used.
For example, the C and C++ language environments do not offer an auto-
mated memory management at standard level. To overcome this limitation
in these environments, designers often build their own, home-grown mem-
ory management systems by using concepts of reference counting, smart
pointers or other techniques. As a non-trivial development task, these so-
lutions tend to lack the required technical maturity for building production
software. For example, the memory management in applications written
for the Symbian OS is known to be horrendous. As a result, a study has
found that three out of four times of device freezings could be attributed
to memory access violations or heap management problems [CCKI07]. The
demise of that operating system in popularity can partly be attributed to
its poor support for building applications [TSL11].

Instead of building project-specific garbage collection mechanisms, a
library-provided solution can be used. For example, a replacement of the
standard allocation and deallocation functions doing automatic memory
management has been available for decades [BW88]. This solution can be
used in many traditional programs without any modifications; the only
difference in many cases is that the existing program’s memory leaks are
fixed by the use of the library.

Non-standard heap-allocation can be used to perform automatic mem-
ory management in virtual machine based environments as well. For exam-
ple, for the Java environment much research has been conducted to provide
escape analysis of objects. If an object can be proven to be local for its
execution thread and execution flow, performance benefits can be realized
by allocating its space from the stack and reducing the needs for locking
[CGS+03]. In this approach, the standard execution environment is modi-

70 5 Programs as models

fied to analyze the program flow, and to use a different allocation scheme
for local objects.

The analysis of program’s code can also be done with external tools.
For example, researchers have documented a case of a Scheme compiler
which instruments the generated code with functionality to detect memory
leaks and to visualize the heap state [SB00].

As can be seen from this section, by just scratching the surface of the
research done for a small sub-area of software engineering, we have iden-
tified a number of approaches for implementing automated memory man-
agement. The prevailing virtual machine based approach is complemented
by a number of other techniques that use the source program as the model
for configuring the way how memory is allocated and deallocated. These
solutions range from project-specific ones, which tend to be poorly general-
izable, to generic, library-based solutions. As a bottom line, this discussion
shows that it is actually not very uncommon for a software structure to
contain self-configuring components.

5.2 Program annotations

Annotating programs to provide hooks for different viewpoints is a popular
way to embrace multiple meanings for software components. For example,
the Scala program in Figure 5.1 is a tail recursive way for deciding whether
its input is a balanced list of parentheses.

@tailrec

def balance(chars: List[Char], level: Int): Boolean = {

if (level < 0) return false

if (chars.isEmpty) return level == 0

if (chars.head == ’)’)

return balance(chars.tail, level - 1)

else if (chars.head == ’(’)

return balance(chars.tail, level + 1)

else

return balance(chars.tail, level);

}

Figure 5.1: Compiler-enforced annotation to tail-recursiveness

In this example, the @tailrec annotation ensures that the program re-

5.2 Program annotations 71

ally is tail recursive - it tells the compiler to reject the code if it cannot be
compiled to be executed in constant stack space.

Annotations are not limited for the compiler use only. Actually, often
the primary target of annotating programs is to guide the software’s frame-
works and external tools about the meaning of the program. For example,
when using an object-to-relational mapping (ORM) component to build a
persistency layer, it is convenient to annotate class members with instruc-
tions to the ORM tool on how to persist the member to the database. The
alternative is to use external configuration files to do the same.

Using an external configuration file decouples the actual definitions and
corresponding semantic guides. This alternative is a good idea when there
are many possible semantic interpretations in the given aspect, e.g. due to
reconfiguration needs. However, when there is only one meaningful inter-
pretation, it probably is a better idea to place the instructing guide as a
program annotation.

Programming environments usually support a standardized way to use
annotations with external tools. For example, the Java 5 platform pro-
vides a possibility to annotate classes, class members, interfaces and other
language constructs (but not all, e.g. local variables). An external tool
[Sun04] provides hooks for external projects to plug into the processing of
annotations. The external tools can be used to modify the structure of the
processed source code, based on the purpose of the plug-in in question.

Program annotations can be seen as a complementary way of providing
program reification. In addition to the program’s dominant meaning, the
alternate aspects can be guided via annotations. This way, program anno-
tations can be used to decouple different aspects of the software’s structure
into meaningful modules. For example, consider the code fragment in Fig-
ure 5.2 written in Scala:

@Entity

class PersistentBean = {

@BeanProperty

@Id

var id;

}

Figure 5.2: A class with multi-aspect annotations

The code introduces the class PersistentBean. The class is annotated to
be an @Entity, which tells the persistency framework that this class is to be
persisted. The class has a single attribute, id. There are two annotations

72 5 Programs as models

to this attribute: @BeanProperty and @Id. The former annotation tells
the Scala compiler to automatically add getter and setter functions for the
attribute. The latter annotation tells the persistency framework to treat
the attribute as the identity field of the objects belonging to this class.

Although the persistency framework advocates the use of transparent
persistency and the Scala language tries to avoid unnecessary introduction
of get and set methods to all public attributes, the presence of persistency
and the tradition of Scala’s predecessor have ”sneaked” into this design.
This kind of mixup, known as annotation hell [RV11] when unrestrictedly
used for larger number of annotated domains is not uncommon in large
software systems. Sometimes this kind of rectifying from the past is just
convenient, but sometimes we wish to have better means to control the
forces that drive us to use annotations.

5.3 Program fragments as the source models

Although program annotations can be useful in many situations, there are
a number of cases where the use of annotations cannot be justified.

First of all, the annotations were originally developed to help in inject-
ing aspect-specific processing instructions to program elements. As pro-
moted in aspect-oriented programming [KLM+97], different aspects should
be modularized into decomposable units. The use of annotations injects
aspect-specific instrumentation to the target site, which breaks the princi-
ple of modularity apart since the dependence target needs to be modified
according to the needs to the dependent.

Another scenario where annotations are problematic is the case of mul-
tiple aspects being attached to a single entity. In this case, each aspect
would inject its own semantic instructions to the instrumented site, which
can prove to cause more problems than the injection mechanism can actu-
ally solve.

Fortunately, there is an alternative: to build the software architecture
to be aware of its own structure. By building self-organizing software com-
ponents into the software architecture, there is no need to use artificial
annotations to guide the different components into their semantic mean-
ing.

As an example, we will build a simple command processor. Let us
consider the Java code in Figure 5.3. It first registers three objects for
handling different commands, and then repeatedly reads in a command
and dispatches following arguments to the given command.

For our discussion, the interesting property in this code lies in how the

5.3 Program fragments as the source models 73

class CommandProcessor {

static Map<String, Cmd> funcs =

new HashMap<String, Cmd>() {{

put("print", new PrintCmd());

put("noop", new NoopCmd());

put("quit", new QuitCmd());

}};

private static Scanner scanner = new Scanner(System.in);

public static void main(String a[]) {

while(true) {

String cmd = scanner.next("\\w+");

String args = scanner.nextLine();

funcs.get(cmd).Execute(args);

}

}

}

Figure 5.3: Code for a command line processor

processor uses a dynamic data structure as the storage for the registered
commands. Using a dynamic structure makes it easy to add new commands
at later time. In contrast to implementing the same functionality by using
e.g. a switch-case construct and hard coding the possible commands into
the structure of the command processor, this dynamic solution makes the
program easier to modify.

This flexibility is gained with the minor runtime cost of using a dynam-
ically allocated data structure with every command fetching being routed
through the hashing function of the object. Although the runtime cost is
small, it still adds some memory and runtime overhead, since the generic
hashing implementation cannot be optimized for this specific use case. For
example, the standard Java implementation for HashMap allocates the de-
fault value of 16 entries in the internal array implementing the map. In
this case, only three of the entries are used, as shown in Figure 5.4. Also,
when fetching the command object for a given command, a generic hashing
function is used, which also gives room for optimization.

With this discussion, we can see characteristics of accidental maintain-
ability in our example. With accidental maintainability we mean that in
this case the solution uses a dynamic data structure for handling a case that
does not actually require a dynamic solution. Namely, the set of available

74 5 Programs as models

0 null
1 null
2 null
3 null
4 null
5 null
6 NoopOb
7 null
8 null
9 null
10 null
11 null
12 null
13 QuitOb
14 PrintOb
15 null

Figure 5.4: HashMap default layout

commands is a property that is bound at design time, but implemented
using a structure that employs runtime binding. There are a number of
reasons for implementing the command processor in this way. The map
implementation is available in the standard class library, its use is well
known and understood among programmers and usually the induced over-
head is negligible. Yet another reason can be the lack of viable alternatives.
In cases where any overhead should be minimized, introducing this dynamic
structure purely due to comfort of the implementer would not be good use
of scarce resources.

An alternative solution to this example is to create a specific imple-
mentation of the map interface that is statically populated to contain all
the required elements. This would make it possible to use context-specific
knowledge of the structure in implementing the command fetching system:
instead of using a fully generic hashing table, more memory and runtime
efficient, specific hash table and hashing functions for the three commands
could be implemented.

The self-configurator component resolves this problem by introducing
a configurator component to this structure. Figure 5.5 illustrates the con-
figuration process. The self-configuring component reads the static list
of commands and generates a specific hashing function, using e.g. gperf
[Sch90] for this set of commands to be used. Now the runtime and memory

5.3 Program fragments as the source models 75

Figure 5.5: Self-configuring function for the command processor

overhead of generic hashing is avoided. The hash generation function is
bound (i.e. executed) at the same time as all other parts are compiled.
This way, the runtime overhead can be minimized. However, the design-
time allocation of command names and associated functions still enjoys the
flexibility of defining the command mapping as a well-understood, standard
Map interface.

There is a degree of freedom in placing this generative part in the bind-
ing time continuum. The hash generating function and associated hash
map generation can take place as part of the normal compilation process,
or they can be delayed up until first use of the command processor object.
As usual, earlier binding time gives opportunities for optimizing for that
special case, while dynamic binding gives more flexibility and possibilities
to use contextual information to determine the behavior.

Applicability

There are many situations where self-configuring components can prove to
be useful. First of all, the pattern is applicable when you are using dy-
namic structures to guard against changes that a future developer might
be performing. In the example in the previous section, the dynamic map-
ping structure defines a clear place for implementing additional commands.
However, this flexibility is gained by introducing additional runtime cost.

Another scenario where you can find this pattern useful is when there
is a need to provide characteristics of one code site to parameterize another
routine. An example of this case can be e.g. a dependency between a set
of different algorithms performing a computation upon data that is held in
the database. Each algorithm requests certain set of data, but you want to
separate the database fetching code from the algorithm’s processing code.
In this case, you can introduce a self-configuring component to analyze each
specific algorithm and to automatically produce optimized queries for each
of them without introducing a dependency between the query site and the
algorithm.

76 5 Programs as models

These types of applications have a dependency between the data that
is read from the database and the algorithm performing the calculations.
Within the object-oriented style of programming, an additional object layer
is built on top of a relational database, creating an additional problem of
object/relational mismatch. An approach of building object-to-relational
mapping frameworks, such as Hibernate [BK06], proved to be popular as a
bridge between object-oriented application code and relational persistence
structures. In order to provide a fluent programming environment for the
object-oriented design, transparent persistence is one of the key phrases.
The promise of transparent persistence means that objects can be pro-
grammed as objects, without paying attention to the underlying relational
database.

One of the tools for achieving transparent persistence is the usage of the
Proxy design pattern [GHJV95, pp. 207-217] to hide if an object’s internal
state is stored in the database, or whether it is already loaded to the main
memory. However, in many cases this delayed fetching hides symptoms of
bad design: the program relies on the slow, runtime safety net implemented
with the proxy. A better design would be to explicitly define which object
should be fetched. If the objects to be processed within a certain algorithm
can be known beforehand, the usage of the Proxy pattern can be classified
as a design fault.

Optionally, the pattern can also expose details of the processed depen-
dency via a dependency interface, which allows programmatic access to
characteristics of this dependency. In the previous example, this kind of
dependency lies between the statically allocated list of commands and the
command-line processing loop.

Implementation

In order to analyze a code site for configuring its dependents, there needs to
be a way to access the source data. When using compilation-time configura-
tion, all the source code is available for analysis. For instantiation time and
runtime configurations the analysis interface is defined by the execution en-
vironment characteristics: some environments, known as homoiconic, such
as the LISP language, expose the full structure of the program for further
analysis; but many current environments do not. In the latter case, the
implementor needs to use his own reification strategy. Popular alternatives
range from byte-code analysis, such as the BCEL library [Dah99] in the
Java environment, to standardized API access to program definition, as
implemented in .NET Expression trees, a data structure available in C#
since its third version [Mic07].

5.3 Program fragments as the source models 77

Regardless of the used access method, the configurator component an-
alyzes the dependent source. Based on this analysis, the dependent is
configured to adhere to the form that is required by the source site. In
the previous example, a possible configuration could be a generation of a
minimal perfect hashing table for the different registered commands.

Often the required target configuration varies from one context to an-
other. What is common in different variations is the built-in ability for the
architecture to adapt to changes between architectural elements, which help
both in maintenance and in gaining understanding of the overall system.

Drawbacks

Fred Brooks has asserted that ”There is no single development, in either
technology or management technique, which by itself promises even one
order of magnitude [tenfold] improvement within a decade in productivity,
in reliability, in simplicity” [Bro87]. This work does not claim to be such,
either.

When building self-configuring software architectures, there are prob-
lems in pre-emphasizing the future needs. The self-configurator ought to
be able to adjust its structure to meet the needs of future enhancements.
Unfortunately, those people who have been gifted with clairvoyance ability
do not end up being software developers. So, the main bulk of architectural
work is done based on best guesses.

For example, the self-configurator component presented in Paper (V)
can automatically reorganize database queries based on the algorithm ac-
cessing the database as long as the component can recognize the analyzed
algorithm’s structure. If the implementation changes from the structure
expected by the self-configurator, then it obviously fails in its job.

Another problem is that writing self-aware code is often considered dif-
ficult. In many cases, it seems to be outside the scope of project personnel.
Although we have argued that in the past we have been able to implement
self-organizing components in agile projects with strict time-boxing limits,
it might be the case that this property is not generalizable over all software
engineering organizations. In many places, even the term metaprogram-
ming might be unknown concept. In these kinds of organizations, it can be
better to start improvements by employing the more classical, well-matured
productivity improving techniques.

78 5 Programs as models

Empirical results

The roots of self-configuring components are based on industrial software
engineering setting: a software product line developed in telecom sector
needed improved configurability. Papers (III), (IV) and (V) discuss differ-
ent aspects of building these components. As this work was done in one
company, in one development team using one set of technologies, one can
argue that the success of the techniques relied upon the skilled engineers
who were doing extraordinary work in that one particular environment.
To prove wider applicability, the techniques should be able to demonstrate
usefulness in other contexts as well.

Controlled experiments are a way to gain insights to this kinds of phe-
nomena. Widely used in many fields of science, they can be employed in
computer science as well. One of the most straightforward ways of per-
forming controlled experiments is the A/B testing. The idea is to divide
the test population to two groups: the first group acts as the control group:
they experience a traditional, or baseline treatment. The second group is
exposed to an alternative, slightly varied treatment. Finally, changes in
outcomes is observed.

In order to understand how well the self-configuring components work
in new contexts, we performed a randomized, controlled experiment as doc-
umented in Paper (VI). Although the number of test subjects was low, the
initial results were impressive: test subjects using the self-configuring com-
ponents outperformed the traditional object-to-relational mapping users by
a factor of three in number of functionally correct submissions. As the re-
sult is statistically significant, we have a reason to believe the approach to
be useful in other contexts as well.

5.4 Related work

The theme of reducing maintenance effort via metaprogramming support
can be seen in many existing software projects. In the context of self-
configuring software components, the special interest lies in the area of
introspective metaprogramming that allows the software to reconfigure its
components as maintenance changes are being made.

Self-configuring components by reflection

Using reflection to build self-configuring components has long been known
as a way to build resilient software. For example, the standard class library
in Java since version 1.3 has included the concept of dynamic proxy classes

5.4 Related work 79

for interfaces. Other people have also proposed extending this functionality
to classes as well [Eug03].

Similar techniques can be applied to arbitrary code entities. For exam-
ple, in section 4.5 we discussed framelets as a bottom-up way to building
frameworks. Using reflectional access to the interface of a framelet has been
shown to be a viable way of automating component gluing [PAS98].

Automatic compiler generation

Generative programming has long been used in constructing the front-end
of a compiler: lex [LS75], yacc [Joh78], and their descendents and look-
alikes are routinely used in building the front-end. However, this solves
only a fraction of the problem; some estimate the scanning and parsing
phases to account for 15% of the whole task [Wai93].

Tim Barners-Lee is quoted of saying: ”Any good software engineer will
tell you that a compiler and an interpreter are interchangeable”. The idea
behind this quote is that since the interpreter executes code in the inter-
preted language, it necessarily has the required knowledge for producing the
equivalent lower level code. Also the other way applies: the compilation
routines for a given language can also be harnessed to build an equivalent
interpreter.

The top-down approach to increasing the amount of automatically gen-
erated parts of a compiler is to introduce stronger formalisms for describing
the functionality of the compiler. Larger parts of the compiler can be gener-
ated by using e.g. attribute grammars to describe the compiler’s semantics
[KRS82] .

This interchanging process can also be seen as a self-configuration com-
ponent. This has been applied e.g. to build compilers for embedded
domain-specific languages [EFM00] and to produce portable execution en-
vironments for legacy binaries [YGF08].

For example, consider the code in Figure 5.6 as an interpreter of a
language. The interpreter is given a list of function pointers to the instruc-
tions of the executed program. After each function pointer invocation, the
instruction pointer is incremented to point to the next memory location
where the next instruction resides. When the instruction pointer becomes
null, execution terminates.

This is a compact way to implement an interpreter. However, the real
problem resides in implementing the actual instructions. The usual way
for implementing semantics of the language, as employed e.g. in Paper (II)
is to hand-write a code generator to emit the lower-level instructions. The
example used in the Paper shows an implementation for generating code

80 5 Programs as models

int *ip;

void interpreter() {

while(ip) {

((void (*)())*ip++)();

}

}

Figure 5.6: Function-pointer hack for running an interpreted language

for addition and multiplication, as shown in Figure 5.7

1 void visitDigit(Digit d) {

2 emit("iconst"+ d.value);

3 }

4

5 public void visitOperator(Operator oper) {

6 if("+".equals(oper.value)) {

7 emit(" iadd");

8 } else if("*".equals(oper.value)) {

9 emit(" imul"); }

10 }

11 }

Figure 5.7: Emitter code for integer addition and multiplication (Paper II)

The code emitter works as a Visitor pattern [GHJV95, p. 331-344] over
an abstract syntax tree. The lower-level byte code to be emitted is hand-
written as calls to emit function, which handles the actual output. This
approach is known as functional decomposition solution to the expression
problem [OZ05]. In Paper (II)’s example, the addition and multiplication
operations are also implemented in the host language for interpreter work,
as shown in Figure 5.8.

The solution for the interpreter to work uses object-oriented decom-
position to encapsulate operation semantics to different subclasses. The
problem in combining two different decomposition methods is duplication:
the semantics for addition and multiplication operations is defined once for
the compilation context and once for interpreter context. If one of these
happens to change, there is no guarantee that the other will be changed as
well.

A self-configuring approach can be used to remove the duplication here,

5.4 Related work 81

abstract eval();

expression lhs, rhs;

operator() {

if (token == ’+’) { eval <- plus.eval; }

else if (token == ’*’) { eval <- times.eval; }

}

// methods plus.eval and times.eval

plus.eval() {

return lhs.eval() + rhs.eval();

}

times.eval() {

return lhs.eval() * rhs.eval();

}

Figure 5.8: Interpreter code for integer addition and multiplication (Paper
II)

as is shown in [YGF08]. When we examine the code produced by the
standard compiler for the method plus.eval, as shown in Figure 5.9, we
see clear correspondence to the Visitor method in Figure 5.7. The iadd
instruction on the line 7 in the Java listing corresponds to the byte code
instruction at index #2 in the reverse engineered version of the class.

$ javap -c Plus

Compiled from "Plus.java"

public class Plus extends java.lang.Object{

[..]

public int eval(int, int);

Code:

0: iload_1

1: iload_2

2: iadd

3: ireturn

}

Figure 5.9: Compiled code for method plus.eval

The instructions at indices 0 and 1 in the compiled code load their argu-
ments. The instruction 2 is correspondent to the emit-method call in Figure

82 5 Programs as models

5.7. Finally, the instruction 3 returns the result back to the caller. To build
a self-configured version of the interpreter/compiler, the self-configurator
can build a compiler from the interpreter by analyzing each opcode defini-
tion of the interpreter and by emitting each opcode’s corresponding code
as the code generation step. This is a way to treat software’s methods as
the source model of a model-driven compiler engineering.

Software renewal via code transformations

In the heart of software maintenance justification lies the fact that rewriting
software is a dangerous business decision. Existing software investment
encodes countless special cases and their handling rules in its corresponding
environment. Evolution can happen via modular changes, but full system
changes are rare and inherently dangerous. This is why the text in flight
tickets is still written in upper case letters.

Sometimes, in cases of low competition, companies might be able to
renew their main operating software. An example of a documented sur-
vival case for a company transiting from a mainframe-based software to a
newer Windows-based system can be found from Finnish Agricultural Data
Processing Centre [NJGG10]. In this case, the transition from the 30-year
old mainframe-based legacy information processing environment to mod-
ernized relational database system was made possible only by low pressure
from competition.

In environments of higher competition, software businesses very seldom
can enjoy the liberty of rewriting their old codebase. For example, the main
reason for Netscape to lose the so-called ”browser war” and ultimately its
independence is attributed to the business decision to rewrite their old
code [Spo04, p. 183-187]. Based on this example, companies are usually
reluctant to make business decisions to a full-rewrite, and they probably
are wise in that.

Figure 5.10 draws a picture of what customers experience when a com-
pany decides to rewrite its software from scratch. The company can ship
the old version of the software while work is undergoing to produce the new
version (old version functionality). Customers experience no new features
or other development while development of the new version is in progress.
It is going to be a long time before the recoding achieves the level of func-
tionality provided by the old version (recode progress). It should be noted
that unlike people often assume, the total effort in redoing the software
probably is not smaller than when doing the previous version [Spo04, p.
186].

The next option is not to throw the old codebase away, but place it in

5.4 Related work 83

Fe
at
ur
es
	

Time!

Recode progress!

Old version
functionality!

Figure 5.10: Rewriting the software from scratch: time-to-market is long
[KB12]

maintenance mode until the new version has been completed. The split-
versions strategy can work for companies with large resources to throw at
a given renewal project. Depending on competition situation, the time-to-
market can be shortened by selecting only the most important features of
the software to be implemented first. This strategy is what Apple used
when transitioning the QuickTime software from 32-bit version 7 to the
64-bit version QuickTime X. The initial release of version X was severely
limited: it allowed only the very basic video playback operations, and the
older version was still offered for any serious work [Sir09].

This strategy is shown in Figure 5.11. Customers experience a slowed-
down development of the old codebase, and the new development is slowed
down due to the need to support the old codebase. It can be questioned
whether the rewrite will ever get ready in this case.

Unfortunately, not all companies have similar resources and strong grip
of their customers, and they also need to renew their software offering
without such major disruptions that QuickTime users experienced. Code
transformations can be used to help in code renewal in a similar way to
self-configuring components.

An example case of using code transformations for code renewal has
been presented in industrial context [KB12]. In this case, the company
has built a ship structural modeling software NAPA, based on Fortran and
self-developed BASIC-flavour, with the total line count ranging in 2 million
source lines of code in Fortran and about the same in the in-house BASIC.
The company developers have estimated the existing codebase to account
for 150 man years of work.

84 5 Programs as models

Fe
at
ur
es
!

Time!

Recode progress!

Old version
functionality!

Figure 5.11: Recode on the side: split focus hinders all development [KB12]

Since not many computer science curricula include Fortran as a ma-
jor educational building block and the used BASIC language is company-
specific, the company is experiencing a major struggle in driving software
development. The business environment gives a continuos pressure to keep
adding features to the product, mandates maintenance development for ex-
isting customers and requires custom projects of special features for key
customers. Competition ensures that ”freezing” of feature development is
not an option for a major technology overhaul [KB12].

Using code transformations similar to self-configuring components can
be used to build a roadmap of technological transition. In the NAPA
case, the work consisted of a BASIC-parser written in ANTLR [PQ94]
and few thousand lines of pattern matching code, written in Mathematica
[Wol03]. In this kind of renewal the idea is to iteratively find generic rules
for translating from the legacy system to the modern technology [Bro10].
Similar approaches have been used previously in legacy system renovations,
for example in renewal of COBOL-based banking systems [vD99].

In principle, the renewal progresses as shown in Figure 5.12. The cover-
age of translation rules can be supposed to experience a law of diminishing
returns: initially few basic rules can handle large amounts of legacy source
code. The leftovers are harder and harder to handle using systematic pat-
tern matching rules. When the gap between legacy functionality and the
code covered with transformations is deemed small enough, the develop-
ment team makes a ”jump of faith” to generate a modernized version of
the legacy code, and all further development stays in that version.

In this version, customers see development continuing with normal, or
a bit slower pace in the legacy codebase. With iterative enhancements to

5.4 Related work 85

Fe
at
ur
es
!

Time!

Normal
development!

Transformed
features!

Transformation
rules!

Figure 5.12: Code transformations are iteratively developed [KB12]

the transformation rules and legacy codebase refactoring, the amount of
correctly transformed code in the legacy platform grows. After the trans-
formation rules is deemed good enough, all development is transitioned to
the renewed platform, which consists of automatically generated code from
the legacy codebase.

However, it should be noted that the development speed charts in Fig-
ures 5.10, 5.11, and 5.12 are hypothetical, generated by using a pseudo-
random number generator. It should be investigated whether this kind of
approach works in practice. Initial reports suggest that in the example
case company the transformation has been successful [Bro13], but more
rigorous studies should be performed to gain better understanding of code
transformation mechanics in practice.

Software productivity via code transformations

Code transformations can be useful not only in modernizing legacy code,
but in building multi-platform software as well. For example, when produc-
ing software to be run on both Android and iOS platforms, several teams
at Google use a Java-to-ObjC translator tool, J2ObjC [Bal13].

The tool has implemented a semantic translation from business-level
Java code to corresponding Objective C constructs. This way, the business
code can be written only once in Java for the Android platform, and then
translated to iOS. By automating this translation, the development teams
do not encounter synchronization problems between two code bases, but
instead can be sure that the business functionality is based on the same
source. Figure 5.13 shows a schema of this tool usage.

86 5 Programs as models

Business logic
(Java)

Android UI
(Java)

Business Logic
(ObjC)

iOS UI
(ObjC)

J2ObjC

Android stack iOS stack

Figure 5.13: Semantic translation from Java to ObjC used to synchronize
business logic to two platforms

The tool tackles the problems of full code translation by limiting itself
purely to the business domain, meaning that the user interface level needs
to be written separately to both of the platforms. This is understandable
since the user interface principles are different in the platforms.

Contrary to the one-time translation approach used in renewing tech-
nology as presented in the previous section, the target of J2ObjC is to
provide a continuous integration between the two platforms. This is a way
to provide programming productivity in the case of multi-platform devel-
opment. Projects can complete faster because they do not need to dupli-
cate the business logic to both platforms. When a new, previously only
Android-based project wants to join in, the translator tool usually needs
to adjust to handle the new special cases introduced by the joining project.
This way, over time the translator tool evolves to handle larger and more
complex cases. Projects can meanwhile enjoy improved productivity and
concentrate to polish the user experience on the different platforms.

The difference between the examples in this and the previous section
resemble the difference between translationalist and elaborationalist ap-
proaches to model-driven engineering discussed in Section 3.2. The ap-
proach to build an initial code transformation suite to lessen the gap when
jumping from the legacy codebase to a modern platform resembles the elab-
orationistic approach. The code transformation suite is being incomplete
and can be compensated by manual coding. On the other hand, introduc-
ing the code translation tool as a part of everyday build cycle resembles
the translationalistic approach: the target is to support all possible source
code constructs.

Chapter 6

Conclusions

Improving programming productivity is the main theme of this thesis. We
have focused on two related approaches: first by using bottom-up modeling
to build project-specific modeling environments, and second by using the
software’s own source components as source models in model translations
to build improved resilience. Resilience in software means that changes
can be made locally, without dependency-based rippling effects breaking
its overall structure. In this chapter, we discuss the implications of these
approaches.

This chapter proceeds as follows. Section 6.1 relates the material in
this introductory part to the papers that follow the introductory part and
review contributions of the thesis. Section 6.2 reviews the limitations of
the thesis. Section 6.3 outlines possible future research.

6.1 Contributions of the thesis

In Papers (I) and (II) we deploy the traditional software engineering tech-
niques to build an optimizing compiler and a language generator. In these
papers, we show incremental evolution to existing approaches.

In Paper (III) we build a project-specific modeling language with a
binding to the existing body of computational knowledge. The modeling
language is exposed as a runtime entity to the project structure, allowing
computational access in other parts of the software. This leads to the
idea of using the software’s own structures as computational elements as
well. This is called the self-configurator component, as the self-configurator
reads in the software’s definition and uses its characteristics to configure
some other part of the software. In Papers (IV) and (V) we have applied the
self-configurator component in two different contexts. Paper (VI) conducts

87

88 6 Conclusions

an empirical experiment in a randomized, controlled environment with the
result of finding the self-configurator variant to be more effective in building
working code.

In Paper (IV) we express the case of component-based software engi-
neering that is widely employed in the area of user interface composition.
User interface widgets can be developed as stand-alone components, and
the interface of a new application can be built by composing from a palette
of these ready-made components. Pioneered in Visual Basic, the approach
has been adapted to numerous application areas.

One of the drawbacks in component-based user interface composing is
the need for duplicated binding expressions when programmatically defin-
ing multiple properties of user interface components. For example, when
defining whether a user interface component is active or not, a corre-
sponding tooltip should be placed. Without sufficient support for cross-
referencing to other binding expressions, providing this kind of conceptual
coherence in the user interface requires cloning of the behavior defining
expressions.

We have built a prototype for analyzing these binding expressions in
the standard Java environment for building web interfaces. By exposing
the structure of the binding expressions to backend code, we were able to
reduce the amount of cloned binding expressions by a factor of 3 in a demo
application presented in Paper (IV).

In Paper (V) we consider typical database applications: they read data
from a database to the main memory, perform an algorithm on the data,
and then write the result back into the database. In the paper we have
documented the usage of self-configured database queries as a tool to im-
prove the runtime properties of this case. In this design, a code analyzer
reads in the byte-code of a given algorithm and deducts the required queries
for prefetching the needed data from the database. This design improves
maintainability: should the algorithm change for some reason, the fetching
code is automatically updated to reflect the change. Another benefit is that
on the architectural level, the number of database-accessing components is
reduced, since this one component can configure itself for multiple cases.

In Paper (VI) we report a controlled, randomized experiment on stu-
dents to determine whether the self-configurator component is useful for
performing maintenance tasks. We built two versions of a simple database
application. The first version uses the self-configuring component presented
in Paper (V), and the second version uses the transparent persistency. Al-
though the two versions differ only in a few lines of code, based on the
results the few lines seem to be crucial for performing maintenance tasks.

6.2 Limitations of the thesis 89

The result suggests that unlimited separation of concerns might be harm-
ful for rapid maintenance tasks: the members in a control group, using
the self-configuring query component, performed statistically significantly
better in the experiment in terms of correct submissions.

6.2 Limitations of the thesis

In the included papers, we have contributed to software engineering tech-
niques in a number of areas, including mobile software development, object-
oriented grammar implementation, mobile network development, database
development, and user interface development. The usefulness of one of the
contributions, the database component, was empirically validated.

It can be seen as a limitation of the thesis that not all of the con-
tributions have been rigorously validated, but their applicability is based
on observations of industrial practice rather than randomized, controlled
experiments. Unfortunately, performing controlled trials is expensive and
time-consuming. Thus, more thorough empirical evaluation was not possi-
ble in the scope of this work.

The empirical validation presented in Paper (VI) was performed by
using students of the conducting university as test subjects. The test group
can be argued to be small, since only 16 students attended the test. For
more reliable results, larger populations should have been used.

6.3 Future directions of research

The main message of this thesis can be summarized as follows: in order
to build maintainable software, an increasing number of software entities
must be addressable by software.

This means that existing abstractions need to be made more accessi-
ble through introspective and reflective interfaces. For new abstractions,
designers should think ahead how the new abstractions would be program-
matically accessed - can the entity in question be a so-called first-class
citizen in the system.

This is an everlasting quest, since both academia and the industry seem
to be endlessly creative in creating new structures, frameworks and systems
to be used. Since the number of possible combinations is unlimited, we have
no fear that maintenance work of these would come to an end.

For the short term, the work could expand to cover new application ar-
eas for self-configurative components. It would be best to start in domains
that involve a high frequency of application and are currently manually

90 6 Conclusions

done. The work presented in this thesis concentrated on a traditional soft-
ware engineering setting, where teams of programmers, designers and archi-
tects work on a software product, using general-purpose languages. Using
self-configurative components could be employed in this area to speed up de-
velopment work and to allow clever programmers to concentrate on harder
problems, instead of wasting their time in doing bulk, automatable work.
In order to validate the usefulness of these efforts, longitudinal studies on
productivity would be needed.

We could also broaden the viewpoint from pure software engineering
to all software creation. Most of software creation lies outside of software
engineering scope: for every professional programmer, there are at least ten
business majors who are doing scripting in their spreadsheet programs. If
errors in enterprise software are bad, the errors in spreadsheet-based busi-
ness decisions can be disastrous. For example, famous economists have
studied the relation between a nation’s gross domestic product and the
debt. Their main result is that median growth rates for countries with
public debt over 90 percent of GDB are roughly one percent lower than
otherwise and average growth rates are several percent lower [RR10]. This
all makes sense, except that the conclusion is based on errors in the re-
searchers’ spreadsheet: they forgot to include a number of countries that
happened to have high public debt and better GDB growth rates [HAP13].

These kinds of problems could be mitigated with self-configuring extract-
transform-load (ETL) components. When extracting data from a data
source, the current transformations usually evaluate the possible source
statements. Often the target system could as well evaluate the expressions,
but successfully carrying the semantic transformations from the source sys-
tem to the target system can be cumbersome. By using self-configuring
programs, the transformations could be automatically carried to the target
system, e.g. to be used in a spreadsheet. This kind of improvement would
be a good target, since ETL programs are widely used in the industry,
and are known to be tedious to build and cumbersome to modify. Thus, a
self-configuring Excel-sheet is the next thing to do.

In the long term, building improved resilience as a routine work of soft-
ware engineering is needed. More complex software is being produced with
the need to address more specific customer needs. Software product lines,
mass customized software and software factories make the space of possi-
ble software configurations much larger than programmers, designers and
architects have used to handle. Software engineers are so busy with pro-
viding value that there is no room for any activities that will be wasted:
in the future, less time will be spent on formal reviews, using the UML or

6.3 Future directions of research 91

using sophisticated metrics to understand productivity. Customers want
their software and they want it now. Cheaply. The key to achieving this
is to building in quality assurance: continuous, automated testing is imple-
mented to reduce waste.

The logical next step is to change the software’s configuration from
manually handled configuration management to automatically managed.
Self-configuring software components are a tool for implementing automat-
ically configuring, change-resilient software architectures within the tightly
budgeted projects that are today’s norm in the software industry.

When self-configuration as a tool to provide self-organization in software
architectures is common knowledge, the next steps take us higher: how do
self-configuring components interact and how should they interact. Can
there be self-configuring components that configure other self-configuring
components? Will there be a need for higher-order self-configuration?
Questions like this are to be answered in the future.

92 6 Conclusions

References

[ABK10] Pekka Abrahamsson, Muhammad Ali Babar, and Philippe
Kruchten. Agility and architecture: Can they coexist? IEEE
Software, 27(2):16–22, 2010.

[ADGR05] Emmanuelle Anceaume, Xavier Défago, Maria Gradinariu,
and Matthieu Roy. Towards a theory of self-organization.
In James H. Anderson, Giuseppe Prencipe, and Roger Wat-
tenhofer, editors, 9th International Conference on Principles
of Distributed Systems OPODIS 2005, Revised Selected Pa-
pers, volume 3974 of Lecture Notes in Computer Science,
pages 191–205. Springer, 2005.

[AK04] Pekka Abrahamsson and Juha Koskela. Extreme program-
ming: A survey of empirical data from a controlled case
study. In Proceedings of the 2004 International Symposium
on Empirical Software Engineering, ISESE ’04, pages 73–82,
Washington, DC, USA, 2004. IEEE Computer Society.

[AK09] Sven Apel and Christian Kästner. An overview of feature-
oriented software development. Journal of Object Technology
(JOT), 8(5):49–84, July/August 2009. Refereed Column.

[Alb79] Aj Albrecht. Measuring application development productiv-
ity. In I. B. M. Press, editor, IBM Application Development
Symposium, pages 83–92, October 1979.

[AM04] Michalis Anastasopoulos and Dirk Muthig. An evaluation of
aspect-oriented programming as a product line implementa-
tion technology. In Proceedings of the International Confer-
ence on Software Reuse (ICSR), pages 141–156, 2004.

[Amb04a] Scott Ambler. Agile model driven development is good
enough. IEE Software, 21(5):71–73, 2004.

93

94 References

[Amb04b] Scott Ambler. The Object Primer: Agile Model-Driven De-
velopment with UML 2.0. Cambridge University Press, 3rd
edition, 2004.

[AN93] Alain Abran and Hong Nguyenkim. Measurement of the
maintenance process from a demand-based perspective.
Journal of Software Maintenance: Research and Practice,
5(2):63–90, 1993.

[AR06] Nitin Agarwal and Urvashi Rathod. Defining ’success’ for
software projects: An exploratory revelation. International
Journal of Project Management, 24(4):358 – 370, 2006.

[AWSR03] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and
Jussi Ronkainen. New directions on agile methods: a com-
parative analysis. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 244–
254, Washington, DC, USA, 2003. IEEE Computer Society.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Ex-
plained: Embrace Change (2nd Edition). Addison-Wesley
Professional, 2004.

[Bab09] Muhammad Ali Babar. An exploratory study of architec-
tural practices and challenges in using agile software devel-
opment approaches. In WICSA/ECSA, pages 81–90. IEEE,
2009.

[Bal13] Tom Ball. Personal communication, 2013.

[Bat05] Don Batory. Feature models, grammars, and propositional
formulas. In Proceedings of the 9th international conference
on Software Product Lines, SPLC’05, pages 7–20, Berlin,
Heidelberg, 2005. Springer-Verlag.

[BCC+10] Hugo Bruneliere, Jordi Cabot, Cauê Clasen, Frédéric
Jouault, and Jean Bézivin. Towards model driven tool inter-
operability: Bridging Eclipse and Microsoft modeling tools.
In Thomas Kühne, Bran Selic, Marie-Pierre Gervais, and
François Terrier, editors, ECMFA, volume 6138 of Lecture
Notes in Computer Science, pages 32–47. Springer, 2010.

[BCT05] Alan Brown, Jim Conallen, and Dave Tropeano. Practi-
cal insights into model-driven architecture: Lessons from

References 95

the design and use of an MDA toolkit. In Sami Beydeda,
Matthias Book, and Volker Gruhn, editors, Model-Driven
Software Development, pages 403–431. Springer Berlin Hei-
delberg, 2005.

[BG09] Andrew Berns and Sukumar Ghosh. Dissecting self-* prop-
erties. In 2012 IEEE Sixth International Conference on
Self-Adaptive and Self-Organizing Systems, pages 10–19, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[BH12] Andrew Binstock and Peter Hill. The comparative pro-
ductivity of programming languages. Dr. Dobb’s Jour-
nal, 2012. http://www.drdobbs.com/jvm/the-comparative-
productivity-of-programm/240005881.

[BJV04] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On
the need for megamodels. In Proceedings of the OOPSLA/G-
PCE: Best Practices for Model-Driven Software Develop-
ment workshop, 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, 2004.

[BK06] Christian Bauer and Gavin King. Java Persistence with Hi-
bernate. Manning Publications Co., Greenwich, CT, USA,
2006.

[BL76] László Belady. and Meir Lehman. A model of large pro-
gram development. IBM Systems Journal, 15(3):225–252,
September 1976.

[BLD11] Mario Bernardi, Giuseppe Di Lucca, and Damiano Distante.
A model-driven approach for the fast prototyping of web
applications. In Proceedings of 13th IEEE International
Symposium on Web Systems Evolution (WSE), pages 65–74,
Sepember 2011.

[BM04] Paul V. Biron and Ashok Malhotra, editors. XML Schema
Part 2: Datatypes. W3C Recommendation. W3C, second
edition, October 2004.

[Boe87] Barry W. Boehm. Improving software productivity. Com-
puter (IEEE), 20(9):43–57, September 1987.

96 References

[Boe88] Barry W. Boehm. A spiral model of software development
and enhancement. Computer, 21(5):61–72, May 1988.

[Bro87] Frederick Brooks. No silver bullet: Essence and accidents of
software engineering. Computer, 20(4):10–19, April 1987.

[Bro95] Frederick Brooks. The mythical man-month (anniversary
ed.). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[Bro10] Robert Brotherus. Transforming a legacy GUI to WPF and
IronRuby. Chapter 10 in Porto Carrero / IronRuby In Ac-
tion (unpublished), 2010.

[Bro13] Robert Brotherus. Personal communication, 2013.

[BS13] Hamid Bagheri and Kevin J. Sullivan. Bottom-up model-
driven development. In David Notkin, Betty H. C. Cheng,
and Klaus Pohl, editors, Proceedings of 35th International
Conference on Software Engineering, ICSE’13, pages 1221–
1224. IEEE / ACM, 2013.

[BSST93] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas.
Scalable software libraries. SIGSOFT Software Engineering
Notes, 18(5):191–199, December 1993.

[BW88] Hans-Jürgen Böhm and Mark Weiser. Garbage collection in
an uncooperative environment. Software, Practice & Expe-
rience, 18(9):807–820, 1988.

[Cas94] Eduardo Casais. An experiment in framework develop-
ment - issues and results. In Architectures and Processes
for Systematic Software Construction. FZI-Publication,
Forschungszentrum Informatik, 1994.

[CCC+11] Antonio Contieri, Guilherme Correia, Thelma Colanzi, Itana
de Souza Gimenes, Edson Oliveira, Sandra Ferrari, Paulo
Masiero, and Alessandro Garcia. Extending UML compo-
nents to develop software product-line architectures: Lessons
learned. In Ivica Crnkovic, Volker Gruhn, and Matthias
Book, editors, Proceedings of 5th European Conference on
Software Architecture, volume 6903 of Lecture Notes in Com-
puter Science, pages 130–138. Springer, 2011.

References 97

[CCKI07] Marcello Cinque, Domenico Cotroneo, Zbigniew Kalbarczyk,
and Ravishankar K. Iyer. How do mobile phones fail? A
failure data analysis of Symbian OS smart phones. In 37th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’07, pages 585–594, June 2007.

[CdPL02] Luiz Marcio Cysneiros and Julio Cesar Sampaio
do Prado Leite. Non-functional requirements: From
elicitation to modelling languages. In Proceedings of the
24th International Conference on Software Engineering,
ICSE ’02, pages 699–700, New York, NY, USA, 2002. ACM.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Genera-
tive Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[CGS+03] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vu-
granam C. Sreedhar, and Samuel P. Midkiff. Stack alloca-
tion and synchronization optimizations for Java using escape
analysis. ACM Transactions on Programming Languages
and Systems, 25(6):876–910, November 2003.

[Cha94] The CHAOS report. Technical report, Standish Group In-
ternational, 1994.

[Cha03] The CHAOS report. Technical report, Standish Group In-
ternational, 2003.

[Cha09] The CHAOS report. Technical report, Standish Group In-
ternational, 2009.

[CJ01] Matthias Clauß and Intershop Jena. Modeling variability
with UML. In GCSE 2001 Young Researchers Workshop,
2001.

[Coo12] William Cook. UML is the worst thing to ever happen to
MDD. Fortunately many people now realize this ... should
I list the reasons? UML was created to model OO designs.
It effect you are modeling the code of a system, not the
system’s behavior. UML is at wrong level. 2) the idea that
7 (or 13) diagram formats in UML can cover everything is
crazy. What about GUIs, web wireframes, authorization, etc.
??? 3) UML has encouraged the idea that models must be

98 References

graphical. Ridiculous! Text and graphic models are both
useful and often interchangeable. 4) UML is at once too large
and complex and at the same time very limiited. stereotype
and profiles are not effective for usable extensions. 5) the
PIM/PSM distinction is misguided. The purpose of high-
level models is not platform independence. It is about ”what”
versus ”how”. Tweet, Jun 2012.

[CROB05] Timothy J. Coelli, D. S. Prasada Rao, Christopher J.
O’Donnell, and George E. Battese. An introduction to ef-
ficiency and productivity analysis. Springer, New York, NY,
second edition, 2005.

[DA10] Jean-Marc Desharnais and Alain April. Software mainte-
nance productivity and maturity. In Proceedings of the
11th International Conference on Product Focused Software,
PROFES ’10, pages 121–125, New York, NY, USA, 2010.
ACM.

[Dah99] Markus Dahm. Byte code engineering. In Clemens H. Cap,
editor, Java-Informations-Tage 1999 JIT’99, Informatik ak-
tuell, pages 267–277. Springer Berlin Heidelberg, 1999.

[DBT11] Frank Dordowsky, Richard Bridges, and Holger Tschope.
Implementing a software product line for a complex avionics
system. In Proceedings of the 15th International Software
Product Line Conference, SPLC ’11, pages 241–250, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[DE05] Bergfinnur Durhuus and Soren Eilers.
On the entropy of LEGO, April 2005.
http://arxiv.org/abs/math.CO/0504039.

[DeM86] Tom DeMarco. Controlling Software Projects: Management,
Measurement, and Estimates. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1986.

[DeM09] Tom DeMarco. Software engineering: An idea whose time
has come and gone? IEEE Software, 26(4):96, 95, 2009.

[Den03] Peter J. Denning. Great principles of computing. Commu-
nications of the ACM, 46(11):15–20, November 2003.

References 99

[DP06] Brian Dobing and Jeffrey Parsons. How UML is used. Com-
munications of the ACM, 49(5):109–113, May 2006.

[DT09] Shlomi Dolev and Nir Tzachar. Empire of colonies: Self-
stabilizing and self-organizing distributed algorithm. Theo-
rerical Computer Science, 410(6-7):514–532, 2009.

[EFM00] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling
embedded languages. In Proceedings of the International
Workshop on Semantics, Applications, and Implementation
of Program Generation, SAIG ’00, pages 9–27, London, UK,
UK, 2000. Springer-Verlag.

[EH07] Torbjörn Ekman and Görel Hedin. The JastAdd system -
modular extensible compiler construction. Science of Com-
puter Programming, 69(1-3):14–26, 2007.

[EHS10] Basem S. El-Haik and Adnan Shaout. Software Design for
Six Sigma: A Roadmap for Excellence. Wiley Publishing,
1st edition, 2010.

[Eug03] Patrick Th. Eugster. Dynamic proxies for classes: Towards
type-safe and decoupled remote object interaction. Tech-
nical Report IC 200317, École Polytechnique Fédérale de
Lausanne, 2003.

[Eva03] Eric Evans. Domain-Driven Design: Tacking Complexity In
the Heart of Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[EvdB10] Luc Engelen and Mark van den Brand. Integrating tex-
tual and graphical modelling languages. Electronic Notes
in Theoretical Computer Science (ENTCS), 253(7):105–120,
September 2010.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[FGDTS06] Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, and
Arnor Solberg. Model-driven development using UML 2.0:
promises and pitfalls. Computer, 39(2):59–66, February
2006.

100 References

[FKA+12] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg
Liebig, Michael Schulze, Raimund Dachselt, Maria Pa-
pendieck, Thomas Leich, and Gunter Saake. Do background
colors improve program comprehension in the #ifdef hell?
Empirical Software Engineering, pages 1–47, May 2012.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley
Professional, first edition, October 2010.

[FP98] Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous and Practical Approach. PWS Publish-
ing Co., Boston, MA, USA, 2nd edition, 1998.

[GFd98] Martin Griss, John Favaro, and Massimo d’Alessandro. In-
tegrating feature modeling with the RSEB. In Proceedings of
the 5th International Conference on Software Reuse, ICSR
’98, pages 76–85, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
Java(TM) Language Specification, The (3rd Edition) (Java
(Addison-Wesley)). Addison-Wesley Professional, 2005.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Text-based modeling. In 4th
International Workshop on Software Language Engineering
(ATEM 2007), 2007.

[Gla02] Robert L. Glass. Facts and Fallacies of Software Engineer-
ing. Addison-Wesley Professional, October 2002.

[Gli07] Martin Glinz. On non-functional requirements. In Proceed-
ings of 15th IEEE International Requirements Engineering
Conference, RE ’07., pages 21–26, 2007.

[GMK02] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-
organising software architectures for distributed systems. In
Proceedings of the first workshop on Self-healing systems,
WOSS ’02, pages 33–38, New York, NY, USA, 2002. ACM.

References 101

[Gom04] Hassan Gomaa. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Architec-
tures. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 2004.

[Gra04] Paul Graham. Beating the averages. In Hackers and
Painters: Big Ideas from the Computer Age, pages 165–180.
O’Reilly Media, Inc., 2004.

[Gro03] Christian Grothoff. Walkabout revisited: The runabout. In
Luca Cardelli, editor, ECOOP 2003 - Object-Oriented Pro-
gramming, volume 2743 of Lecture Notes in Computer Sci-
ence, pages 103–125. Springer Berlin Heidelberg, 2003.

[GV09] Iris Groher and Markus Völter. Aspect-oriented model-
driven software product line engineering. In Shmuel Katz,
Harold Ossher, Robert France, and Jean-Marc Jézéquel, ed-
itors, Transactions on Aspect-Oriented Software Develop-
ment VI, volume 5560 of Lecture Notes in Computer Science,
pages 111–152. Springer Berlin Heidelberg, 2009.

[HAP13] Thomas Herndon, Michael Ash, and Robert Pollin. Does
high public debt consistently stifle economic growth? A cri-
tique of Reinhart and Rogoff. Working paper 322, Politi-
cal Economy Research Institute, University of Massachusetts
Amherst, April 2013.

[HF01] Jim Highsmith and Martin Fowler. The agile manifesto. Soft-
ware Development Magazine, 9(8):29–30, 2001.

[HH04] Imed Hammouda and Maarit Harsu. Documenting main-
tenance tasks using maintenance patterns. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering, CSMR’04, pages 37–47, 2004.

[HISMP+13] Dave Hunt, Luke Inman-Semerau, Mary Ann May-
Pumphrey, Noah Sussman, Paul Grandjean, Peter Newhook,
Santiago Suarez-Ordonez, Simon Stewart, and Tarun Ku-
mar. Selenium documentation [15.06.2013]. Technical re-
port, 2013. http://seleniumhq.org/docs/index.html.

[HKC11] Werner Heijstek, Thomas Kuhne, and Michel R. V. Chau-
dron. Experimental analysis of textual and graphical repre-
sentations for software architecture design. In Proceedings

102 References

of the 2011 International Symposium on Empirical Software
Engineering and Measurement, ESEM’11, pages 167–176,
2011.

[HS07] James Holmes and Chris Schalk. JavaServer Faces: The
Complete Reference. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 2007.

[HT99] Andrew Hunt and David Thomas. The pragmatic program-
mer: From journeyman to master. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

[ISO06] ISO/IEC/IEEE. International Standard ISO/IEC 14764
IEEE Std 14764-2006 - Software Engineering - Software Life
Cycle Processes – Maintenance. pages 1–46, 2006.

[ISO10] ISO/IEC/IEEE. International Standard ISO/IEC/IEEE
24765 - Systems and software engineering - Vocabulary. 2010.

[JF88] Ralph E. Johnson and Brian Foote. Designing Reusable
Classes. Object-Oriented Programming, 1(2), 1988.

[JJ05] Yang Jun and Stan Jarzabek. Applying a generative tech-
nique for enhanced genericity and maintainability on the
J2EE platform. In Robert Glück and Michael Lowry, edi-
tors, Generative Programming and Component Engineering,
volume 3676 of Lecture Notes in Computer Science, pages
237–255. Springer Berlin Heidelberg, 2005.

[JL96] Richard Jones and Rafael D Lins. Garbage Collection: Algo-
rithms for Automatic Dynamic Memory Management. Wi-
ley, 1996.

[Joh78] Stephen C. Johnson. Yacc: Yet another compiler-compiler.
Technical Report 32, Bell Telephone Laboratories, Murray
Hill, NJ, 1978.

[Jon94] Capers Jones. Assessment and control of software risks.
Yourdon Press, Upper Saddle River, NJ, USA, 1994.

[Jon95] Capers Jones. Patterns of large software systems: Failure
and success. Computer, 28(3):86–87, mar 1995.

[Jon08] Capers Jones. Applied Software Measurement: Global Anal-
ysis of Productivity and Quality. McGraw-Hill Companies,
Incorporated, 2008.

References 103

[KB12] Antti Karanta and Robert Brotherus. Renewal of Napa soft-
ware GUI technologies and architecture with language legacy
transformation and architectural refactoring. In Industry
Day presentation at WICSA/ECSA 2012 Conference, 2012.

[KCH+90] Kyo C. Kang, Sholom Cohen, James Hess, William No-
vak, and Spencer Peterson. Feature-oriented domain analy-
sis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, Carnegie-Mellon University Software Engineering
Institute, November 1990.

[KEGN01] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and
David Notkin. Automated support for program refactoring
using invariants. In ICSM 2001, Proceedings of the Interna-
tional Conference on Software Maintenance, pages 736–743,
Florence, Italy, November 6–10, 2001.

[Ker88] Brian W. Kernighan. The C Programming Language. Pren-
tice Hall Professional Technical Reference, 2nd edition, 1988.

[KL07] Birgit Korherr and Beate List. A UML 2 profile for
variability models and their dependency to business pro-
cesses. In Proceedings of the 18th International Conference
on Database and Expert Systems Applications, DEXA ’07,
pages 829–834, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Ir-
win. Aspect-oriented programming. In Mehmet Akşit and
Satoshi Matsuoka, editors, ECOOP’97 - Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer
Science, chapter 10, pages 220–242. Springer Berlin / Hei-
delberg, Berlin/Heidelberg, 1997.

[KMLBM08] Toma Kosar, Pablo E. Martinez López, Pablo A. Barrientos,
and Marjan Mernik. A preliminary study on various imple-
mentation approaches of domain-specific language. Informa-
tion and Software Technology, 50(5):390–405, April 2008.

[Knu84] Donald E. Knuth. Literate programming. The Computer
Journal, 27:97–111, 1984.

104 References

[Kro03] John Krogstie. Evaluating UML using a generic quality
framework. In Liliana Favre, editor, UML and the Uni-
fied Process, pages 1–22. IGI Publishing, Hershey, PA, USA,
2003.

[KRS82] Kai Koskimies, Kari-Jouko Räihä, and Matti Sarjakoski.
Compiler construction using attribute grammars. In Proceed-
ings of the 1982 SIGPLAN Symposium on Compiler Con-
struction, SIGPLAN ’82, pages 153–159, New York, NY,
USA, 1982. ACM.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Intro-
duction. Addison-Wesley, Boston, 3 edition, 2003.

[Kru08] Philippe Kruchten. What do software architects really do?
Journal of Systems and Software, 81(12):2413–2416, 2008.

[KRW05] Douglas Kirk, Marc Roper, and Murray Wood. Identifying
and addressing problems in framework reuse. In Proceedings
of 13th International Workshop on Program Comprehension,
IWPC’05, pages 77–86, 2005.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley-IEEE
Computer Society, March 2008.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ex-
plained: The Model Driven Architecture: Practice and
Promise. The Addison-Wesley Object Technology Series.
Addison-Wesley, 2003.

[LATaM09] Sérgio Lopes, Francisco Afonso, Adriano Tavares, and Jo
ao Monteiro. Framework characteristics - A starting point
for addressing reuse difficulties. In Fourth International Con-
ference on Software Engineering Advances, ICSEA ’09, pages
256–264, 2009.

[Leh80] Meir M. Lehman. Programs, life cycles, and laws of soft-
ware evolution. Proceedings of the IEEE, 68(9):1060 – 1076,
September 1980.

[LEV10] Johan Laurenz Eveleens and Chris Verhoef. The rise and
fall of the chaos report figures. IEEE Software, 27(1):30–36,
January 2010.

References 105

[Lie86] Henry Lieberman. Using prototypical objects to implement
shared behavior in object-oriented systems. In Conference
proceedings on Object-oriented programming systems, lan-
guages and applications, OOPLSA ’86, pages 214–223, New
York, NY, USA, 1986. ACM.

[Lin99] Kurt R. Linberg. Software developer perceptions about soft-
ware project failure: a case study. Journal of Systems and
Software, 49(2-3):177 – 192, 1999.

[LS75] Michael. E. Lesk and Eric Schmidt. Lex – a Lexical Analyzer
Generator. Technical report, Bell Laboratories, 1975. CS
Technical Report No. 39.

[LS80] Benent Lientz and Burton Swanson. Software mainte-
nance management: a study of the maintenance of computer
application software in 487 data processing organizations.
Addison-Wesley, Reading (MA), 1980.

[LSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes.
Software Product Lines in Action: The Best Industrial Prac-
tice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf
Spinczyk, and Wolfgang Schröder-Preikschat. A quantita-
tive analysis of aspects in the eCos kernel. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, EuroSys ’06, pages 191–204, New
York, NY, USA, 2006. ACM.

[LV02] Juan de Lara and Hans Vangheluwe. Computer aided multi-
paradigm modelling to process Petri-nets and statecharts. In
Proceedings of the First International Conference on Graph
Transformation, ICGT ’02, pages 239–253, London, UK,
UK, 2002. Springer-Verlag.

[Mad10] James Madison. Agile architecture interactions. IEEE Soft-
ware, 27(2):41–48, March 2010.

[MAP+08] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Al-
berto Sillitti, and Giancarlo Succi. A case study on the im-
pact of refactoring on quality and productivity in an agile
team. In Bertrand Meyer, Jerzy R. Nawrocki, and Bartosz

106 References

Walter, editors, Balancing Agility and Formalism in Soft-
ware Engineering, pages 252–266. Springer-Verlag, Berlin,
Heidelberg, 2008.

[MB97] Michael Mattsson and Jan Bosch. Framework composition:
Problems, causes and solutions. In Proceedings of the Tools-
23: Technology of Object-Oriented Languages and Systems,
TOOLS ’97, pages 203–214, Washington, DC, USA, 1997.
IEEE Computer Society.

[MB02] Stephen Mellor and Marc Balcer. Executable UML: A Foun-
dation for Model-Driven Architecture. Addison-Wesley Ob-
ject Technology Series. Addison-Wesley, 2002.

[MBC09] Marcilio Mendonca, Moises Branco, and Donald Cowan.
S.P.L.O.T.: software product lines online tools. In Proceed-
ings of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and appli-
cations, OOPSLA ’09, pages 761–762, New York, NY, USA,
2009. ACM.

[McC96] Steve McConnell. Rapid development: Taming wild software
schedules. Microsoft Press, 1996.

[McC04] Steve McConnell. Code Complete, Second Edition. Microsoft
Press, 2004.

[McG08] John D. McGregor. Agile software product lines, decon-
structed. Journal of Object Technology, 7(8):7–19, 2008.

[MD08] Parastoo Mohagheghi and Vegard Dehlen. Where is the
proof? - A review of experiences from applying MDE in
industry. In Proceedings of the 4th European conference on
Model Driven Architecture: Foundations and Applications,
ECMDA-FA ’08, pages 432–443, Berlin, Heidelberg, 2008.
Springer-Verlag.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When
and how to develop domain-specific languages. ACM Com-
puting Surveys, 37(4):316–344, December 2005.

[Mic07] Microsoft Ccorporation. C# standard, version 3.0. Technical
report, 2007.

References 107

[MK96] Jeff Magee and Jeff Kramer. Self organising software ar-
chitectures. In Joint proceedings of the second international
software architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software development
(Viewpoints ’96) on SIGSOFT ’96 workshops, ISAW ’96,
pages 35–38, New York, NY, USA, 1996. ACM.

[MM03] Joaquin Miller and Jishnu Mukerji. MDA Guide version
1.0.1. Technical report, Object Management Group (OMG),
2003.

[MM10] Laurie McLeod and Stephen MacDonell. Stakeholder percep-
tions of software project outcomes: An industry case study.
In Proceedings of the 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement,
ESEM ’10, pages 32:1–32:4, New York, NY, USA, 2010.
ACM.

[MNSB06] Wim Martens, Frank Neven, Thomas Schwentick, and
Geert Jan Bex. Expressiveness and complexity of
XML Schema. ACM Transactions on Database Systems,
31(3):770–813, September 2006.

[MV12] Raphael Mannadiar and Hans Vangheluwe. Modular arti-
fact synthesis from domain-specific models. Innovations in
Systems and Software Engineering, 8(1):65–77, March 2012.

[Nat68] NATO Software Engineering Conference, 1968.

[NCM04] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers.
Scalable extensibility via nested inheritance. In Proceedings
of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
OOPSLA ’04, pages 99–115, New York, NY, USA, 2004.
ACM.

[Nie02] Oscar Nierstrasz. Software evolution as the key to produc-
tivity. In Proceedings Radical Innovations of Software and
Systems Engineering in the Future, pages 274–282. Springer-
Verlag, 2002.

[NJGG10] Uolevi Nikula, Christian Jurvanen, Orlena Gotel, and Don-
ald C. Gause. Empirical validation of the classic change

108 References

curve on a software technology change project. Information
and Software Technology, 52(6):680 – 696, 2010.

[OMG07] OMG. XML Metadata Interchange (XMI). OMG, 2007.

[Opd92] William F. Opdyke. Refactoring object-oriented frameworks.
PhD thesis, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1992. UMI Order No. GAX93-05645.

[OZ05] Martin Odersky and Matthias Zenger. Independently ex-
tensible solutions to the expression problem. In Proceed-
ings of the 12th International Workshop on Foundations
of Object-Oriented Languages, FOOL 12, January 2005.
http://homepages.inf.ed.ac.uk/wadler/fool.

[Paa95] Jukka Paakki. Attribute grammar paradigms - a high-level
methodology in language implementation. ACM Computing
Surveys, 27(2):196–255, June 1995.

[Par57] C. Northcote Parkinson. Parkinson’s Law Or The Pursuit
of Progress. Penguin business library. Penguin, 1957.

[Par72] David Lorge Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of the ACM,
15(12):1053–1058, December 1972.

[PAS98] Wolfgang Pree, Egbert Althammer, and Hermann Sikora.
Self-configuring components for client/server applications.
In Proceedings of 9th International Workshop on Database
and Expert Systems, pages 780–783, 1998.

[PEM03] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Re-
quirements engineering and agile software development. In
Proceedings of the Twelfth International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enter-
prises, WETICE ’03, pages 308–313, Washington, DC, USA,
2003. IEEE Computer Society.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe.
Product line annotations with UML-F. In Lecture Notes
in Computer Science, pages 188–197. Springer-Verlag, 2002.

[Phi94] J.J. Phillips. In Action: Measuring Return on Investment.
In Action. American Society for Training and Development,
1994.

References 109

[Pig96] Thomas M. Pigoski. Practical Software Maintenance: Best
Practices for Software Investment. John Wiley & Sons, Inc.,
1996.

[PJ98] Jens Palsberg and C. Barry Jay. The essence of the visi-
tor pattern. In Proceedings of the 22nd International Com-
puter Software and Applications Conference, COMPSAC
’98, pages 9–15, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[PK00] Wolfgang Pree and Kai Koskimies. Framelets - small and
loosely coupled frameworks. ACM Computing Surveys,
32(1es), March 2000.

[PKdWvV12] Eltjo Poort, Andrew Key, Peter de With, and Hans van
Vliet. Issues dealing with non-functional requirements across
the contractual divide. In Proceedings of 2012 Joint Work-
ing Conference on Software Architecture and 6th European
Conference on Software Architecture, WICSA-ECSA.212.52,
pages 315–319. IEEE, 2012.

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software
Development: An Agile Toolkit. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[PP09] Mary Poppendieck and Tom Poppendieck. Leading Lean
Software Development: Results Are Not the Point. Addi-
son Wesley Signature Series. Addison-Wesley, 2009.

[PQ94] Terence J. Parr and Russell W. Quong. ANTLR: A
predicated-LL(k) parser generator. Software Practice and
Experience, 25:789–810, 1994.

[Pre10] Roger Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill, Inc., New York, NY, USA, 7 edi-
tion, 2010.

[Ree79] Trygve Reenskaug. Models-views-controllers. Technical note,
Xerox PARC, December, 1979.

[Roy70] Winston W. Royce. Managing the Development of Large
Software Systems. In Proceedings of IEEE Wescon, pages
1–9, August 1970.

110 References

[RR10] Carmen M. Reinhart and Kenneth S. Rogoff. Growth in
a time of debt. Working Paper 15639, National Bureau of
Economic Research, January 2010.

[RV11] Henrique Rocha and Marco Tulio Valente. How annotations
are used in Java: An empirical study. In SEKE, pages 426–
431. Knowledge Systems Institute Graduate School, 2011.

[SAR12] Paula Savolainen, Jarmo J. Ahonen, and Ita Richardson.
Software development project success and failure from the
supplier’s perspective: A systematic literature review. In-
ternational Journal of Project Management, 30(4):458 – 469,
2012.

[SB00] Manuel Serrano and Hans-Jürgen Böhm. Understanding
memory allocation of scheme programs. In Proceedings of
the 5th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’00, pages 245–256, New York,
NY, USA, 2000. ACM.

[SB05] Tilman Seifert and Gerd Beneken. Model-Driven Software
Development. Springer, 2005.

[SBKM09] Juha Savolainen, Jan Bosch, Juha Kuusela, and Tomi
Männistö. Default values for improved product line man-
agement. In Proceedings of the 13th International Software
Product Line Conference, SPLC ’09, pages 51–60, Pitts-
burgh, PA, USA, 2009. Carnegie Mellon University.

[Sch90] Douglas C. Schmidt. GPERF: a perfect hash function gener-
ator. In USENIX C++ conference proceedings: C++ Con-
ference, San Francisco, California, pages 87–102, 1990.

[Sch95] Ken Schwaber. SCRUM development process. In Proceedings
of OOPSLA’95 Workshop on Business Object Design and
Implementation, pages 117–134, 1995.

[Sch05] Stephen R. Schach. Classical and Object-Oriented Software
Engineering. McGraw-Hill, 6 edition, 2005.

[SEI13] SEI, Software Engineering Institute. Published
software architecture definitions, May 2013.
sei.cmu.edu/architecture/start/glossary/published.cfm.

References 111

[Sir09] John Siracusa. Mac OS X 10.6 Snow
Leopard: the Ars Technica review. 2009.
http://arstechnica.com/apple/2009/08/mac-os-x-10-6/6/.

[SKRS05] Stefan Sarstedt, Jens Kohlmeyer, Alexander Raschke, and
Matthias Schneiderhan. A new approach to combine models
and code in model driven development. In International
Conference on Software Engineering Research and Practice,
International Workshop on Applications of UML/MDA to
Software Systems, SERP’05, 2005.

[SKV11] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. A
pure embedding of attribute grammars. Science of Computer
Programming, 2011.

[SLB+10] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wa-
sowski, and Krzysztof Czarnecki. The variability model of
the Linux kernel. In Proceedings of 4th International Work-
shop on Variability Modelling of Software-intensive Systems,
VAMOS’10, Linz, Austria, January 2010.

[SLTM91] Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen,
and Pentti Marttiin. MetaEdit – A flexible graphical envi-
ronment for methodology modelling. In Advanced Informa-
tion Systems Engineering, pages 168–193. 1991.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley,
Harlow, England, 9. edition, 2010.

[SPL03] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis.
Modernizing Legacy Systems Software Technologies, Engi-
neering Processes, and Business Practices. Addison-Wesley,
2003.

[Spo04] Joel Spolsky. Joel on Software: And on Diverse and Occa-
sionally Related Matters That Will Prove of Interest to Soft-
ware Developers, Designers, and Managers, and to Those
Who, Whether by Good Fortune Or Ill Luck, Work with
Them in Some Capacity. Apress Series. Apress, 2004.

[SS03] Raul Silaghi and Alfred Strohmeier. Better generative pro-
gramming with generic aspects. In OOPSLA 2003 Workshop
in Generative Techniques in the Context of Model Driven
Architecture, 2003.

112 References

[SS12] Jeff Sutherland and Ken Schwaber. The Scrum papers: Nuts,
Bolts, and Origins of an Agile Process, Version 1.1, April
2012.

[Sun04] Sun Microsystems. Annotation Processing Tool (apt), 2004.

[SW11] Richard M. Stallman and Zachary Weinberg. The C Prepro-
cessor for GCC version 4.7.2, 2011.

[Swa76] E. Burton Swanson. The dimensions of maintenance. In
Proceedings of the 2nd International Conference on Software
Engineering, ICSE ’76, pages 492–497, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

[Swe85] Richard E. Sweet. The Mesa programming environment.
SIGPLAN Notices, 20(7):216–229, June 1985.

[Tai96] Antero Taivalsaari. On the notion of inheritance. ACM
Computing Surveys, 28(3):438–479, September 1996.

[TB03] Dave Thomas and Brian M. Barry. Model driven develop-
ment: The case for domain oriented programming. In Com-
panion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and ap-
plications, OOPSLA ’03, pages 2–7, New York, NY, USA,
2003. ACM.

[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn. XML Schema Part 1: Structures. World
Wide Web Consortium, Recommendation REC-xmlschema-
1-20041028, October 2004.

[TLB+09] Thomas Tan, Qi Li, Barry W. Boehm, Ye Yang, Mei He,
and Ramin Moazeni. Productivity trends in incremental and
iterative software development. In Proceedings of 3rd Inter-
national Symposium on Empirical Software Engineering and
Measurement, ESEM’09, pages 1–10, 2009.

[TMY+09] Masateru Tsunoda, Akito Monden, Hiroshi Yadohisa, Na-
homi Kikuchi, and Kenichi Matsumoto. Software develop-
ment productivity of Japanese enterprise applications. In-
formation Technology and Management, 10(4):193–205, De-
cember 2009.

References 113

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley
Sutton. N degrees of separation: Multi-dimensional sepa-
ration of concerns. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages 107–
119, New York, NY, USA, 1999. ACM.

[TSL11] David Tilson, Carsten Sorensen, and Kalle Lyytinen. The
paradoxes of change and control in digital infrastructures:
The mobile operating systems case. In Proceedings of the
2011 10th International Conference on Mobile Business,
ICMB ’11, pages 26–35, Washington, DC, USA, 2011. IEEE
Computer Society.

[vD99] Arie van Deursen. Software renovation. ERCIM News, 36,
1999.

[Vli98] John Vlissides. Pattern hatching: design patterns applied.
Addison-Wesley Longman Ltd., Essex, UK, 1998.

[VS04] Rini Van Solingen. Measuring the ROI of software process
improvement. IEEE Software, 21(3):32–38, 2004.

[VS06] Valentino Vraniae and Jan Snirc. Integrating feature model-
ing into UML. In Robert Hirschfeld et al., editors, Proceed-
ings of NODe 2006, LNI P-88, pages 3–15, Erfurt, Germany,
September 2006. GI.

[Wai93] William M. Waite. Beyond lex and yacc: How to gener-
ate the whole compiler. Technical report, University of Col-
orado, 1993.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Getting Your Models Ready for MDA. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
second edition, 2003.

[Wol03] Stephen Wolfram. The Mathematica book (5. ed.). Wolfram-
Media, 2003.

[YGF08] Alexander Yermolovich, Andreas Gal, and Michael Franz.
Portable execution of legacy binaries on the Java virtual ma-
chine. In Proceedings of the 6th International Symposium on
Principles and Practice of Programming in Java, PPPJ ’08,
pages 63–72, New York, NY, USA, 2008. ACM.

114 References

[ZHK07] Weishan Zhang, Dong Han, and Thomas Kunz. Object-
orientation is evil to mobile game: Experience from indus-
trial mobile RPGs. In Yann-Hang Lee, Heung-Nam Kim,
Jong Kim, Yongwan Park, Laurence Tianruo Yang, and
Sung Won Kim, editors, ICESS, volume 4523 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2007.

[ZHKH07] Weishan Zhang, Dong Han, Thomas Kunz, and Klaus Mar-
ius Hansen. Mobile game development: Object-orientation
or not. In Computer Software and Applications Confer-
ence, 2007. COMPSAC 2007. 31st Annual International,
volume 1, pages 601 –608, July 2007.

Reprints of original publications

