
RELIABILITY ASSESSMENT USING
BAYESIAN NETWORKS
Case study on quantative reliability estimation of
a software-based motor protection relay

Atte Helminen, Urho Pulkkinen

VTT Industrial Systems

In STUK this study was supervised by Marja-Leerna Järvinen

STUK-YTO-TR 198 / JUNE 2 0 0 3

STUK • SÄTEILYTURVAKESKUS
STRÅLSÄKERHETSCENTRALEN

RADIATION AND NUCLEAR SAFETY AUTHORITY

Osoite/Address • Laippatie 4, 00880 Helsinki
Postiosoite / Postal address • PL / P.O.Box 14, FIN-00881 Helsinki, FINLAND
Puh./Tel. (09) 759 881, +358 9 759 881 • Fax (09) 759 88 500, +358 9 759 88 500 • www.stuk.fi

ISBN 951-712 -690 -5 (p r in t)
ISBN 951-712 -691 -3 (pdf)
ISSN 0785-9325

Dark Oy, Vantaa /Fin land 2003

The conc lus ions presented in the STUK repor t ser ies a re those of the authors
and do not necessar i l y represent the o f f ic ia l pos i t ion o f STUK

S T U K - Y TO - T R 1 9 8

3

Abstract

In this report a quantitative reliability assessment of motor protection relay SPAM 150 C
has been carried out. The assessment focuses to the methodological analysis of the quanti-
tative reliability assessment using the software-based motor protection relay as a case
study. The assessment method is based on Bayesian networks and tries to take the full
advantage of the previous work done in a project called Programmable Automation
System Safety Integrity assessment (PASSI).

From the results and experiences achieved during the work it is justified to claim that the
assessment method presented in the work enables a flexible use of qualitative and quanti-
tative elements of reliability related evidence in a single reliability assessment. At the
same time the assessment method is a concurrent way of reasoning one’s beliefs and
references about the reliability of the system.

Full advantage of the assessment method is taken when using the method as a way to
cultivate the information related to the reliability of software-based systems. The method
can also be used as a communicational instrument in a licensing process of software-
based systems.

HELMINEN Atte, PULKKINEN Urho (VTT Industrial Systems). Reliability assessment using
Bayesian networks.. Case study on quantative reliability estimation of a software-based motor
protection relay. STUK-YTO-TR 198. Helsinki 2003. 28 pp. + Appendices 3 pp.

Keywords: reliability assessment, software-based system, Bayesian network

4

S T U K - Y TO - T R 1 9 8

This report is a description of a pilot case study in which the ideas developed earlier in a
project called Programmable Automation System Safety Integrity assessment (PASSI) are
tested first time in practice. The practical implementation and further developed of the
reliability assessment method has been laborious but also very interesting and encourag-
ing. In the case study the theory and the assessment method are efficiently demonstrated.
However, this has only been the first step and similar case studies need to be analysed in
the future research. Through case studies like the one carried out in the work it is possi-
ble to obtain a maximum learning from the relation between software development
process and software reliability. At the same time the case studies guide toward the best
ways of implementing reliability estimation methods to software development processes.

The assessment was carried out in VTT Industrial Automation and the research team
consists of Professor Urho Pulkkinen and research scientist Atte Helminen. The assess-
ment was carried out in co-operation with ABB Substation Automation. The authors
would like to thank ABB Substation Automation and especially Tapio Hakola, Grels
Linqvist, Tapio Niemi and Henrik Sundell for their time and expertise in this reliability
assessment process.

Foreword

S T U K - Y TO - T R 1 9 8

5

Contents

ABSTRACT 3

FOREWORD 4

1 INTRODUCTION 7

2 DESCRIPTION OF THE ASSESSMENT TARGET AND ASSUMPTIONS 9
2.1 Target of the case study 9
2.2 Assumptions in the assessment 10

3 DESCRIPTION OF ASSESSMENT PROCESS 11
3.1 Overview 11
3.2 Prior estimation 11
3.3 Operational experience 12
3.4 Version management 13

4 BAYESIAN NETWORK MODEL 14
4.1 Overview 14
4.2 Prior for first software version 14
4.3 Implementing operational experience of software version 15
4.4 Implementing influence of software changes 15

5 DESCRIPTION OF EVIDENCE 16
5.1 Overview 16
5.2 Expert judgements 16

5.2.1 Steps 1 to 3 16
5.2.2 Step 4 16
5.2.3 Step 5 18
5.2.4 Step 6 18

5.3 Operational experience 18
5.4 Changes between software versions 19

6 RESULTS 21
6.1 Failure frequency 21
6.2 Predictive estimation 21
6.3 Analysis of results 23

7 DISCUSSION 25

8 CONCLUSIONS 27

REFERENCES 28

APPENDIX 1 QUESTIONS OF THE INTERVIEW 29

APPENDIX 2 THE BAYESIAN NETWORK IN THE ASSESSMENT 30

APPENDIX 3 WINBUGS-CODE OF THE BAYESIAN NETWORK 31

S T U K - Y TO - T R 1 9 8

7

The need for shifting from analog instrumenta-
tion and control (I&C) systems to corresponding
digital I&C systems is becoming current also with
the I&C systems of nuclear power plants. To have
a control over this transition and to have basis for
the licensing of digital I&C systems there needs to
be solid methods for assessing the reliability of
the new digital I&C systems. However, to give the
maximum support for the licensing process of dig-
ital I&C systems the reliability assessment meth-
od should not only produce exact values related to
reliability, but with the assessment method the
reasons for the produced values should be clari-
fied.

With the analog systems there is the nice
feature that systems can be tested thoroughly. For
digital systems this is usually not the case. Digital
systems mainly fail because of their inherent
design faults, which are triggered at appropriate
conditions with certain inputs. Since the number
of possible inputs for even relatively simple sys-
tems becomes unreasonably large, the system can
only be tested to a certain extent. As the system is
not tested with all the possible inputs under all
different conditions i.e. under all operational pro-
files, there is always some uncertainty left to the
reliability of the system. The most convenient way
to handle such uncertainty is through the use of
probabilistic calculus.

For digital systems that can’t be tested exhaus-
tively there rises a question if such systems can
ever be used in applications for which high relia-
bility is required. One way to tackle this dilemma
is to compensate the lack of reliability related
testing evidence with evidence from other sources.
Such sources are for example the system develop-
ment process, design features and operational
experience. In the reliability assessment of digital
systems this compensation of evidence is not al-
ways a straightforward operation. Different evi-

dence sources involve many qualitative character-
istics that are difficult to translate to unambigu-
ous quantitative measures. These characteristics
contain a lot of information relevant to the relia-
bility of the system and should not be overlooked
and thrown away. Therefore, the methods used for
the reliability estimation should have enough flex-
ibility to overcome the problem.

The approach used in the work tries to take the
points mentioned above into consideration. The
approach is based on Bayesian statistics and in
particular to its technical solution called Bayesian
networks. Bayesian statistics enables the imple-
mentation of qualitative and quantitative infor-
mation flexibly together as well as updating the
estimation while new information is obtained
about the system and introduced to the estima-
tion. The reliability assessment carried out in the
report is a practical continuum to the work done
previously in PASSI-project. The theory and ideas
on which the assessment is mainly based on can
be found more explicitly explained in report by
Helminen [1]. The purpose of the report is to test
the developed assessment method with a practical
case study. The emphasis has been on the method-
ological analysis of the quantitative reliability
assessment. The details related to the technical
features of the case study system and to the
evidence used have only been reviewed on a level
necessary to test the functionality of the assess-
ment method.

In Chapter 2 a general description of the sys-
tem under case study and some initial assump-
tions of the assessment are given. Chapter 3
contains a representation of the assessment proc-
ess and overview on the evidence involved in the
assessment. Closer review on the mathematical
formalism and the Bayesian network model used
in the work for the reliability estimation is given
in Chapter 4. Chapter 4 includes more detailed

1 Introduction

8

S T U K - Y TO - T R 1 9 8

information, which is not needed for all readers
but gives valuable information for advanced read-
ers interested on the mathematical viewpoint of
the topic. In Chapter 5 a detailed explanation of
the assessment process and the evidence is given.

The numerical results of the assessment are pre-
sented in Chapter 6. The assessment process and
the results are discussed in Chapter 7 and the last
chapter, Chapter 8, is left for short conclusions
about the work.

S T U K - Y TO - T R 1 9 8

9

2.1 Target of the case study
The system under assessment is SPAM 150 C –
motor protection relay produced by ABB Substa-
tion Automation. A picture of the relay is shown in
Figure 1. The numerical motor protection relay
SPAM 150 C is an integrated design current meas-
uring multifunction relay for the complete protec-
tion of alternating current motors. The main area
of application covers large and medium-sized
three-phase motors in all types of conventional
contactor or circuit-breaker controlled motor
drives.

The relay continuously measures the three
phase currents and the residual current of the
protected object. When a fault occurs, the relay
starts and operates, if the fault persists long
enough to exceed the set or calculated operate
time of the relay. Depending on the relay setting
and on the fault occured the relay either gives an
alarm or a launch signal for the protection opera-
tion. The multi-function relay module comprises
seven units: a three-phase overcurrent unit, a

2 Description of the assessment target
and assumptions

thermal overload unit, start-up supervision unit,
a phase unbalance unit, an incorrect phase se-
quence unit, an undercurrent unit and a non-
directional earth-fault unit. The descriptions of
the protection functions for different units are
following:
• The overcurrent unit holds a low-set stage Is

and a high-set stage I>>. The high-set stage
provides short-circuit protection. The low-set
stage can be used for start-up supervision or
for time overcurrent protection.

• The thermal unit supervises the thermal stress
of the protected object during various load
conditions. The unit provides thermal prior
alarm and thermal tripping and it prevents the
protected object from being re-energised, if the
protected object is too hot to be successfully re-
energised.

• The start-up supervision can be realised ac-
cording to several principles. It can be based on
measuring the start time, measuring the ther-
mal stress at start-up or the use of an external
speed switch.

• The phase unbalance unit protects, e.g. motors,
from the stress caused by an unbalanced net-
work. The unit operates with inverse time
characteristic. The operate time of the unit at
full unbalance, i.e. at loss of one phase is 1
second.

• The incorrect phase sequence protection has a
factory-set operate time of 0.6 seconds.

• The undercurrent unit is used for the protec-
tion of motors at sudden loss of load in certain
applications, such as conveyors and submersi-
ble pumps. The unit features definite time
characteristic.

• The earth-fault unit provides a sensitive earth-
fault protection with definite time characteris-
tic.Figure 1. Motor protection relay SPAM 150 C. [2]

10

S T U K - Y TO - T R 1 9 8

The relay incorporates a sophisticated self-super-
vision system with auto-diagnosis, which increas-
es the availability of the relay and the reliability
of the system. The self-supervision system contin-
uously monitors the hardware and the software of
the relay. The system also supervises the opera-
tion of the auxiliary supply module and the volt-
age generated by the module. [2]

2.2 Assumptions in the assessment
The reliability assessment involves evidence of
both quantitative and qualitative nature. To make
the assessment possible some assumptions on the
evidence was made. For example the operational
experience data is based directly on the informa-
tion obtained from the target system manufactur-
er, and no additional evaluation was carried out.
The following evidence was accepted in the as-
sessment as such:
• classification of software faults
• number of software faults for different soft-

ware versions
• classification of software changes
• number of software changes made between

different software versions

• estimated amount of operational experience
for different software versions.

In principle, the evidence listed above could have
been interpreted as uncertain, and therefore de-
scribed as random variables in the assessment
model. In the assessment more evidence was col-
lected and certain assumptions was made using
expert judgements and the given evidence. To car-
ry out the assessment following assumptions was
made:
• Prior estimation on the reliability of the first

software version given by the system develop-
ers

• Prior estimation on the reliability changes be-
tween software versions given by the assess-
ment executives

• Different software versions function in a single
and similar operational profile

In addition, to enable the combination of dispa-
rate evidence together and on the other hand to
maintain the workload in a reasonable scale cer-
tain simplifications to the given evidence were
made. These simplifications are described in de-
tail in the following chapters.

S T U K - Y TO - T R 1 9 8

11

3.1 Overview
The idea in the assessment process is to combine
all available evidence to form a reliability estima-
tion of the target system. Characteristics of differ-
ent kind of evidence and the main sources of relia-
bility related evidence in the case of software-
based safety critical system is explained more ex-
plicitly in report by Helminen [1]. In the assess-
ment the evidence was mainly obtained from the
system development process and from the opera-
tional experience of the system. The evidence of
system testing involved in the assessment was
integrated as a part of the system development
process evidence.

In the assessment process the whole life cycle
of the motor protection relay was taken into
consideration. A diagram representing the assess-
ment process is depicted in Figure 2. First, a prior
estimate for the reliability of system’s first soft-
ware version was built. The prior estimate is
mainly based on the quality evidence of system
development process. This estimate was then up-
dated using the data, i.e. operational experience,
obtained for the first software version. Later on
when the software was modified the effect of the
modifications to the system reliability was esti-

3 Description of assessment process

mated and operational experience for the second
version was introduced to the estimation. This
procedure was repeated, as many times as there
were new software versions produced in the life
cycle of the system.

3.2 Prior estimation
The analysis began from building a prior estima-
tion for the first software version of the system.
The prior estimation was built using the expert
judgements given by the designers and the ones
responsible for the implementation of the system.
The expert judgements were collected in an inter-
view, which was mainly based on guidebooks, rec-
ommendations and standards for developing high
quality software-based systems. An important as-
pect in the interview was to compare the validity
of the given expert judgements to the documenta-
tion produced from the system during the life cy-
cle of the system. The questions asked in the in-
terview is presented in Appendix 1. In the inter-
view the questions concerning the software devel-
opment process were divided in five separate
groups: project control and quality, requirement
specification phase, design phase, implementation
phase and testing phase.

Figure 2. Diagram representing the software (SW) reliability assessment process.

SW changes

between versions

A and B

SW changes

between versions

F and G

Prior estimate

for SW

version A

Reliability

estimate for SW

version A

Reliability

estimate for SW

version B

Operational

experience for SW

version A

Operational

experience for SW

version B

Reliability

estimate for SW

version G

Operational

experience for SW

version G

etc…

12

S T U K - Y TO - T R 1 9 8

Category Software fault criticality:

1 Causes no trouble to customer

2 Causes inconvenience to small
fraction of customers

3 Causes inconvenience to over 80%
of customers or critical fault to
small fraction of customers

4 Critical fault, which requires
announcement to all customers
and updates if requested by the
customer

5 Critical fault, which requires an
update to all customers

Before the interview the experts received a
short period of training on the assessment process
and how to give probability estimations based on
expert judgement overall. The training session
was given to the experts at the same time, but the
interviews were made individually. The questions
in the interview formed a basis for a discussion
with a expert on matters related to different
software development phases. After the query of
each software development phase an expert was
asked to quantify how well he thought the produc-
tion team managed in the execution of the phase
in a numerical scale of one to ten. The numerical
value given by the expert was called a score value.
The expert was also asked to give a weight on the
importance of the software development phase to
the system reliability. In the training session the
numerical scale used in the interview and the
meaning of different score values were discussed
and this way each expert was able to build an
impression of his own about the meaning of the
scaled values in the aspect of system reliability.

The last step of the interview, after giving the
score values and the weights, the expert was
asked to give a system failure frequency distribu-
tion for two or three different score values be-
tween one and ten. The values are used for the
calibration of the scale of score values. The values
didn’t need to be among the score values given
earlier in the interview, but the system failure
frequency distributions should represent expert’s
impression of the score values as well as possible.
By giving failure frequency distributions for arbi-
trary score values it was possible to extrapolate a
failure frequency distribution for other score val-
ues in the scale.

The score values of each expert were combined
using an additive value function, which then pro-
vided a single score value representing the ex-
pert’s reliability estimation for the first software
version of the system. In the final reliability
assessment the reliability estimates or failure
frequency distributions of all the experts were
combined together to form the prior failure esti-
mate for the first software version of the target
system.

3.3 Operational experience
The operational experience data included to the
estimation was statistical operational experience
data estimated for each software version of the
target system. The operational experience consid-
ered in this work is the amount of working years
estimated for each software version and the
amount of software faults detected for the soft-
ware version during these working years. The soft-
ware faults encountered for each software version
were reported either by the developer or the cus-
tomers using the system. The faults were ana-
lysed and depending on the nature of the faults
they were corrected in the next software version.

In the assessment the software faults were
classified into five categories depending on their
severity from the customer’s point of view. The
categories were numbered from one to five, one
being the least critical and five being the most
critical fault to the customer. The five categories
and their descriptions are given in Table I. The
label software fault may be somewhat a harsh and
misleading description for all the categories de-
scribed in Table I. Some of the faults encountered
for the device from the customer’s point of view
might be caused for example from using the
device for a purpose it wasn’t even originally
designed for. Among other things this aspect is
taken into consideration in a new categorisation
carried out later in Chapter 5.

Table I. Categories of software faults.

S T U K - Y TO - T R 1 9 8

13

Category Software change criticality:

1 Limit value change, having no
strain to CPU

2 Change to a module, which can be
well tested using automatic tests
scripts

3 Change to a protection function

4 Major change having an influence
to the interruption vectors

5 Major change having an influence
to many places in the software

3.4 Version management
In case there are several software versions pro-
duced during the life cycle of a software-based
system it is important to be able to use the evi-
dence from previous software versions in the reli-
ability estimation of the last software version.
This is especially important if the operational ex-
perience available from the latest software ver-
sion is small.

If the reliability assessment is carried out for a
software-based system involving two or more soft-
ware versions, the effects of the modifications
between the software versions and their criticality
to the system reliability need to be evaluated. In
the assessment the evaluation was carried out by
classifying the changes in software to five differ-
ent categories depending on the criticality the
changes have to the software. The categories were
numbered from one to five. Making a change from
category one is expected to have the least critical
significance while making a change from category
five is expected to have the most critical signifi-

Table II. Categories of software changes.

cance to the software and therefore to the reliabil-
ity of the system. The five different categories and
their descriptions are given in Table II.

Based on the number of faults and changes
made for a software version and depending on the
categories the faults and changes fall into a suita-
ble increment or reduction to the failure frequen-
cy distribution is introduced in the assessment.
More of this procedure is explained in Chapter 5.

14

S T U K - Y TO - T R 1 9 8

4.1 Overview
The approach used in the assessment is based on
Bayesian statistics and in particular to its techni-
cal solution called Bayesian networks. More de-
tailed description of the Bayesian statistics and
the Bayesian network theory can be found for ex-
ample in books by Gelman et al. [3] and Box &
Tiao [4]. An application of a Bayesian framework
in combining expert judgements is explained in
detail for example in a report by Pulkkinen &
Holmberg [5]. More explicit description on the the-
ory of using Bayesian networks to the reliability
assessment of software-based systems can be
found for example in reports by Helminen [1] and
Korhonen et al. [6]. The Bayesian network model-
ling and simulations in this report are carried out
using WinBUGS program, and so all representa-
tions of Bayesian networks shown below are in
WinBUGS format. For a closer review about Win-
BUGS program see Spiegelhalter et al. [7].

The basic principle of the Bayesian network
model used in the work follows the general de-
scription of the assessment process given in Fig-
ure 2. More detailed description of the evidence
used in the assessment and how to quantify it for
the use of the model will be given later in the text.
In the model the prior distribution for the reliabil-
ity of the first software version is determined
using expert judgements on the software develop-
ment process. The prior distribution is then up-
dated by using the operation experience of the
first software version. The corrections and chang-
es made to develop the next software version were
taken into account by assuming that the reliabili-
ty parameters are subjected to a random distur-
bance. This leads to a prior distribution of the
reliability of the second software version, which is
updated by using the operational experience of
the second software version. The procedure is
repeated for all software versions.

A Bayesian network utilising the evidence re-
lated to the assessment process is depicted in
Appendix 2. The Bayesian network presented in

4 Bayesian network model

Appendix 2 is the network used to obtain a quan-
titative reliability estimation of the system under
study. The WinBUGS-code giving an unambiguous
description of the network is given in Appendix 3.
In this chapter parts of the Bayesian network
shown in Appendix 2 are explained in more detail.

4.2 Prior for first software version
Implementation of the prior estimation for the
first software version given by the four experts is
taken care by the upper left part of the network.
The part of network under interest is pictured
also in Figure 3. Figure 3 describes the determi-
nation of prior distribution for the reliability pa-
rameter of the first software version. Mathemati-
cally, the reliability parameter, ThetaA, is as-
sumed to be a mixture of normal distributions,
determined by the judgements of the four experts.
In the network a discrete value for parameter Z is
sampled in each sampling round. Z determines
the parameter values of Mu and InvVar. The val-
ues possible for Mu and InvVar are listed in pa-
rameters OpMu[] and OpInvVar[]. In OpMu[] and
OpInvVar[] are entered the prior parameters of
the first software version given by the four ex-
perts. Mu and InvVar are the parameters of the
normal distribution ThetaA. Therefore, the distri-

Figure 3. Network to build prior reliability estimation
for the first software version.

Class[1:4]

OpMu[] Z OpInvVar[]

Mu InvVar

ThetaA

S T U K - Y TO - T R 1 9 8

15

bution of ThetaA, correspond to mixture:

()
4

1

() i
i

p ThetaA p ThetaA
=

=∑
4

1

() i
i

p ThetaA p ThetaA
=

=∑ ,,

where pi(ThetaA) = N(OpMu[i],1/OpInvVar[i]) are
the normal distributions based on the opinions of
the four experts.

4.3 Implementing operational
experience of software version
Implementation of operational experience is car-
ried out separately for all software versions and
can be seen as the repetitive lower part of the
network shown in Appendix 2. The repetitive part
for the first software version is shown in Figure 4.
Since the operational experience obtained in the
assessment for each software version is in a form
of failures found in a certain time interval it is
reasonable to assume that failures X1 are Poisson
distributed with mean parameter t1LambdaA as
following:

X1 ~ Poisson(t1LambdaA),

where parameter t1LambdaA is a product of time
interval t1 and the failure frequency of the soft-
ware version named as parameter LambdaA.

Normal distributed failure parameter ThetaA
is integrated to the network to enable more flexi-
ble combination of different prior estimations and
software versions using a single Bayesian net-
work. The idea is analogous with the combination
of different operational environments in a single
network as explained in report by Helminen [1].
Normal distribution is defined in the interval

(-∞,∞), and since the failure frequency parameter
LambdaA can only receive positive values a log-
transformation is needed and, therefore, Lamb-
daA is the log-transformation of parameter
ThetaA defined as following:

LambdaA = exp(ThetaA).

The underlying model in the network depicted in
Figure 4 is so called lognormal-Poisson model.
Closer review on using lognormal-Poisson model
in failure frequency rate estimation is found for
example in report by Pulkkinen & Simola [8].

4.4 Implementing influence of
software changes
Implementation of the influence of software
changes between software versions is carried out
with a repetitive upper part of the network shown
in Appendix 2. The repetitive part for the first two
software versions is shown in Figure 5. Idea in
combining the evidence from successive software
versions is that the failure probability of the lat-
ter software version, ThetaB, is the same as the
failure probability of the preceding software ver-
sion, ThetaA, added with a normal distributed ran-
dom accretion or reduction term named Omega-
AB. The relation of the parameters is defined as
following:

ThetaB = ThetaA + OmegaAB.

Variables MuAB and InvVarAB determine the pri-
or parameters for the normal distributed random
variable OmegaAB as following:

()1~ ,OmegaAB N MuAB InvVarAB
1~ ,OmegaAB N MuAB InvVarAB ..

The values for parameters MuAB and InvVarAB
used in the assessment are given for two different
approaches in the last two columns of Table IX.

Figure 4. Network to implement operational
experience to software version.

LambdaA

t1LambdaA

ThetaA

X1

t1

Figure 5. Network to implement influence of software
changes.

ThetaA ThetaB

OmegaAB

MuAB InvVarAB

16

S T U K - Y TO - T R 1 9 8

5.1 Overview
There were four experts taking part in the assess-
ment process. The amount of experts was approxi-
mately half the size of the whole production team
of motor protection relay SPAM 150 C. All experts
involved in the assessment process were current
employees of ABB Substation Automation and had
a major role in the development process and exe-
cution of the relay. Two of the experts were mainly
involved with the tasks related to the system re-
quirement specification and project management.
The other two were mainly involved with the sys-
tem design, implementation and testing.

The software in the motor protection relay was
strongly based on the software made for its prede-
cessors and the relay was a part of so called
SPACOM-product family. The legacy from the pre-
vious products had probably a strong influence to
the reliability estimations given by the experts,
but this matter was not explicitly considered in
the work.

The first version of SPAM 150 C was produced
during years 1989 and 1990 in which the approxi-
mately amount of work was two man-years. The
total amount of man-years used for producing the
predecessors from year 1980 to 1989 was about
twelve. The software includes approximately
40 000 lines of code about half of the lines being
for commentary.

5.2 Expert judgements
A diagram representing the actual steps of the
expert judgement process for building up the prior
estimation for the first software version is pre-
sented in Figure 6. Steps 1, 2 and 4 were carried
out during the interview described in general in
Chapter 3. The fourth step turned out to be very
troublesome for the experts. Reason for the diffi-
culty lay in the approach used in the interview for
the elaboration of the failure frequency distribu-

5 Description of evidence

tions of the arbitrary score values. The question
setting was such that the experts were supposed
to give the failure frequency distribution of soft-
ware faults causing the system to fail in a protec-
tion function on a scale of system failures per
protection demands given to the system. Taking
into consideration the continuous protection char-
acteristic of the relay a better approach would
have been to scale the failure frequency distribu-
tions on a scale of system failures per time the
system is operating. This impracticality was cor-
rected by renewing the fourth step of the expert
judgement process in a written form within a
week from the original interview.

5.2.1 Steps 1 to 3
In the first two steps of expert judgement process
the five different phases of the software develop-
ment process were discussed in an interview.
Based on the previous experience and the conclu-
sions made in the interview the experts gave score
values and weights for the different software de-
velopment phases. The score values and weights
for the different experts are shown in Table III.

Using the additive value function presented in
the step 3 of Figure 6 total score values were
calculated from the score values and weights
given by the experts. The total score values for the
experts are listed in the last column of Table III.

5.2.2 Step 4
To convert the total score value of the expert to
corresponding failure frequency distribution each
expert was asked to give failure frequency distri-
butions for two or three different score values. To
be more specific, an expert was asked to give fail-
ure frequency fractiles of given score values. Fail-
ure frequency distributions for the score values
were then solved by fitting lognormal distribu-
tions for the failure frequency fractiles given by

S T U K - Y TO - T R 1 9 8

17

STEP 1:

Judgements of scores for different phases of

the SW development process by experts

Score for

phase i by

expert 1,
i=1,…5

si1

Score for

phase i by

expert 4,
i=1,…5

si4

…

STEP 2:

Judgements of weights for different phases of

the SW development process by experts

Weight for

phase i by

expert 1,
i=1,…5

wi1

Weight for

phase i by

expert 4,
i=1,…5

wi4

…

STEP 6:

Combination of experts distributions of failure

probability

Combined probability distributions of failure

probability

4

1i
ii
Spfpf

STEP 3:

Determination of total scores by experts

Total score by

expert 1

5

1
15

1
1

1

1
i

i

l
i

i s

w

w
S

Total score by

expert 4

5

1
45

1
4

4

4
i

i

l
i

i s

w

w
S

…

STEP 4:

Determination of distribution of failure

probability for any total score value by experts

Lognormal

distribution

of failure
probability

for total

score S by
expert 1

f1(p|S)

…
Lognormal

distribution

of failure
probability

for total

score S by
expert 4

f4(p|S)

STEP 5:

Determination of distribution of failure

probability for total score value given by the
experts

Lognormal

distribution

of failure
probability

for total

score S1 by
expert 1

f1(p|S1)

…
Lognormal

distribution

of failure
probability

for total

score S4 by
expert 4

f4(p|S4)

Phase: Project control
and quality

Requirement
specification

Design Implementation Testing Total

weight score weight score weight score weight score weight score score

Expert 1 5 5,5 8 8 7 7,5 6 7,5 7 8,75 7,58

Expert 2 7 7 8 8 9 6,5 7 8,5 10 9 7,83

Expert 3 9 8,5 10 9 8 8,5 5 8 10 9 8,68

Expert 4 8 9 10 9,5 7 8,5 9 9,25 8 9,5 9,18

Figure 6. Diagram presenting the six steps of the expert judgement process.

Table III. Score and weight values given by the experts.

18

S T U K - Y TO - T R 1 9 8

the expert. The failure frequency fractiles and the
mean and variance parameters of the most suita-
ble lognormal distributions are shown in Table IV.

5.2.3 Step 5
Based on the total score value in the last column
of Table III and the failure frequency distributions
of different score values in Table IV a failure fre-
quency distribution of the first system software
version was determined for each expert by using
the method of least square. The mean and vari-
ance parameters of the lognormal distributions
obtained for the experts are shown in Table V.

5.2.4 Step 6
The last step was to combine the four failure fre-
quency distributions given by the experts to one
joint prior distribution reflecting the reliability of
the first software version of the target system.
The combination was carried out in the Bayesian
network model and by the calculation algorithm
of WinBUGS-program.

5.3 Operational experience
So far there had been seven software versions of
SPAM 150 C. The operational experience of differ-
ent software versions available in the assessment
was the approximated amount of working years
and the amount and types of software faults en-

countered with the different software versions.
The approximated number of working years for
each software version is given in Table VI. Based
on the numbers of devices sold on each year the
amount of working years for each software ver-
sions was estimated. The number of working years
was calculated so that on the delivery year the
devices were in operation only half the year i.e.
the devices were delivered uniformly during the

Table IV. Fractiles for different score values given by the experts and µ and σ2 parameter values of the most
suitable lognormal distributions.

Score: 0 5 10

Expert p X(p) µ σ² p X(p) µ σ² p X(p) µ σ²

Expert 1 0,1 5·10e–5 –7,6 3,2 0,1 1,5·10e–5 –8,8 3,2 0,1 1·10e–6 –11,5 3,2

0,5 5·10e–5 0,5 1,5·10e–4 0,5 1·10e–5

0,9 5·10e–3 0,9 1,5·10e–3 0,9 1·10e–4

Expert 2 0,05 1·10e–5 –9,1 2,8 0,05 5·10e–6 –9,8 2,8 0,05 1·10e–6 –11,4 2,8

0,33 5·10e–5 0,33 2,5·10e–5 0,33 5·10e–6

0,5 1·10e–4 0,5 5·10e–5 0,5 1·10e–5

0,67 3·10e–4 0,67 1,5·10e–4 0,67 3·10e–5

0,95 1·10e–3 0,95 5·10e–4 0,95 1·10e–4

Scores: 0 8 10

Experts: p X(p) µ σ² p X(p) µ σ² p X(p) µ σ²

Expert 3 0,05 1·10e–3 –3,0 0,2 0,05 5·10e–5 –8,5 0,8 0,05 2·10e–5 –9,2 1,0

0,5 5·10e–2 0,5 2·10e–4 0,5 1·10e–4

0,95 1·10e–1 0,95 1·10e–3 0,95 5·10e–4

Expert 4 0,1 2·10e–1 –0,8 0,4 0,1 2·10e–4 –6,9 1,2 0,1 1·10e–4 –7,7 1,4

0,25 3·10e–1 0,25 5·10e–4 0,25 2·10e–4

0,5 5·10e–1 0,5 1·10e–3 0,5 5·10e–4

0,75 7·10e–1 0,75 2·10e–3 0,75 1·10e–3

0,9 1·10e0 0,9 4·10e–3 0,9 2·10e–3

Table V. Lognormal parameters of the failure
frequency distributions of the experts.

Expert:

Prior:

µ σ²

Expert 1 –10,3 3,2

Expert 2 –10,8 2,8

Expert 3 –8,6 0,8

Expert 4 –7,4 1,3

Table VI. The approximated number of working years
for software versions.

SW version: Working years per SW version:

A 68

B 345

C 115

D 369

E 9805

F 2386

G 36747

S T U K - Y TO - T R 1 9 8

19

year. On the following years the devices sold be-
fore are in operation for the full year until a new
software version was introduced. It was assumed
that after commissioning the device was in opera-
tion full time around the clock.

In Table I the categories for software fault
criticality were given. The number of software
faults found in different fault criticality categories
for different software versions is presented in
Table VII. However, to give a better overall de-
scription about the nature of software fault and to
simplify the calculation process of the assessment
the categories of the faults encountered with dif-
ferent software versions were reduced from the
original five categories to two groups. The soft-
ware faults were put in one of the two groups
depending on which of the five original categories
the faults found fall into. Two groups were named
as software inconveniences and software faults.
Faults in categories 1 and 2 in Table I were
considered as software inconveniences whereas
faults in category 3, 4 and 5 were considered as
software faults in the assessment. The quantity of
software inconveniences and faults encountered
for the different software versions are listed in
Table VIII.

5.4 Changes between software versions
When considering the independent changes made
between successive software versions and their in-
fluence on the system reliability two different pol-
icies were taken in the assessment. In the first
approach neutral attitude towards the changes
was taken, which means that the prior mean val-
ue of change in failure probability between suc-
cessive software versions was assumed zero. In
the second approach a rather conservative atti-
tude was taken and it was assumed that as a prior
assumption a change in software has always a

Table VII. The number of software defects found for different software versions.

SW version: Category 1 Category 2 Category 3 Category 4 Category 5

A 3 0 1 0 1

B 5 1 0 0 0

C 0 0 1 1 0

D 1 0 0 0 0

E 4 1 3 0 0

F 1 1 0 1 0

G — — — — —

negative influence to the reliability of the system.
What this means is that as a fault is removed
from a software new faults are always introduced
to the software. The magnitude of reduction in the
reliability depends on the amount and criticality
of the changes made to the software.

As in the previous section also the criticality of
software changes was divided to two groups de-
pending on which category in Table II the changes
fall into. The groups were named as minor and
major change made to the software. In the assess-
ment a change from category 1 or 2 was consid-
ered as a minor change whereas a change from
category 3, 4 or 5 was considered as a major
change. The number of minor and major changes
for each software version is listed in Table IX.
Depending on the amount of minor or major
changes made for a new software version a suita-
ble prior estimation was built to reflect the change
of system reliability the changes were believed to
have. Parameters of the normal distributed priors
used in the assessment to reflect the change
between software versions are given in the last
two columns of Table IX. The prior distributions
are based on the expert judgement of the assess-
ment executives.

Table VIII. Software faults and software inconveniences
encountered for different software versions.

SW
version:

Number of SW
inconveniences

(categories 1–2):

Number of
SW faults

(categories 3–5):

A 3 2

B 6 0

C 0 2

D 1 0

E 5 3

F 2 1

G — —

20

S T U K - Y TO - T R 1 9 8

Table IX. Amount of software changes made to each software version and prior estimations on the influence
of software changes. µ and σ2 are the parameters of normal distributions.

SW
version:

Number of
minor changes

(categories 1–2):

Number of
major changes

(categories 3–5):

Prior (neutral
approach):

Prior (conservative
approach):

µ σ² µ σ²

A — — — — — —

B 11 0 0 1 0,1 1

C 14 10 0 1 1 1

D 3 1 0 1 0,25 1

E 1 1 0 1 0,25 1

F 16 6 0 1 0,5 1

G 10 5 0 1 0,5 1

S T U K - Y TO - T R 1 9 8

21

6.1 Failure frequency
The parameters we are most interested in the net-
work presented in Appendix 2 are the values of
parameters Lambda, especially LambdaG, which
reflects the failure frequency distribution of the
last software version. Also the values of parame-
ters Omega are some of interest, since they reflect
the change in the software reliability between suc-
cessive software versions. The more negative the
distribution of parameter Omega is the greater
enhancement has been achieved with a new soft-
ware version. However, the results considering pa-
rameters Omega haven’t been contemplated in
more detail in the report.

Calculations with the Bayesian network were
carried out for four different scenarios using all
the evidence available at the time being. The
scenarios differ by the approach used on the
influence of software changes and by the data
regarding the software faults encountered for the
software versions. Different data sets were used
for the conservative and neutral approach on the
influence of software changes. In the first data set
only the number of software faults in Table VIII
encountered for different software versions were
implemented to the network as fault data. In the
second data set both the software faults and the
software inconveniences in Table VIII were taken
into consideration.

Using all evidence in the assessment the poste-
rior failure frequency distributions of different
software versions for the conservative approach is
illustrated in Figure 7. In the figure are the poste-
rior failure frequency distributions ranging from
2,5 percentile, the lower bar, to 97,5 percentile,
the upper bar, and median marked as a dot
somewhere in between. Corresponding graph for
the neutral approach is given in Figure 8.

An approximation of the expectation value for
the number of devices encountering a software

6 Results

fault during a year of operation can be obtained
from the median values of distributions shown in
Figures 7 and 8. The reader should, however, be
reminded that median is not the same thing as
expectation value even though in symmetrical
distributions they concur. The posterior distribu-
tions in this case are not symmetrical and there-
fore median value gives only an approximation for
the expectation value. For example from Figure 7
it can be estimated that for software version A it
is expected that two devises out of thousand will
encounter a software fault during a year of opera-
tion. For software version G the expected number
is approximately four devices out of one hundred
thousand during a year of operation. Here all the
devices are assumed to function in a similar
operational profile.

6.2 Predictive estimation
An interesting addition to the failure frequency
estimation using the full evidence is how well the
model predicts the failure frequency of a new soft-
ware version when only part of the evidence is
used in the assessment. Predictive estimation can
be seen as a chronological estimation. The failure
frequency distribution for a new software version
is estimated only using the evidence available at
that moment back in the history. Estimates below
were calculated for all software versions using the
same operational experience times as in the previ-
ous section.

Calculations for the first software version was
carried out using only the first part of the network
shown in Appendix 2, i.e. using the parts of net-
work shown in Figures 3 and 4. The prediction
calculation was performed by marking the data
representing the amount of software failures of
the first software version as missing. The realised
calculation was carried out likewise but having
the data representing the amount of software

22

S T U K - Y TO - T R 1 9 8

failures of the first software version implemented
to the network. For the second software version
only the first repetitive part of the network was
attached to the previous network and same proce-
dure was carried out for the second software
version. Similar operations were repeated until
for the last software version the network was the
same as shown in Appendix 2.

The estimates were carried out for the conserv-
ative and neutral approach using the number of
software faiults as data. The results of the calcula-

tions for the predictive failure frequencies are
illustrated in Figures 9 and 10.

In Figures 9 and 10 the meaning of the ap-
proaches used for the influence of software chang-
es can be seen in more detail. For neutral ap-
proach the median of the predictive failure fre-
quency distribution of the new software version is
the same as the median of the failure frequency
distribution of the previous software version. For
conservative approach the median is shifted up-
ward by the amount determined in Table VIII.

Figure 8. Posterior 0,025–0,5–0,975 percentiles for failure frequency distributions of different software
versions for the neutral approach.

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

A B C D E F G

Software version

Fa
ilu

re
 f

re
q

ue
nc

y
[/

a]

software faults all inconveniences

Figure 7. Posterior 0,025–0,5–0,975 percentiles for failure frequency distributions of different software
versions for the conservative approach.

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

A B C D E F G
Software version

Fa
ilu

re
 f

re
q

ue
nc

y
[/

a]

software faults all inconveniences

S T U K - Y TO - T R 1 9 8

23

Figure 9. Predictive and calculated posterior 0,025–0,5–0,975 percentiles for failure frequency distributions of
different software versions for the conservative approach.

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

A B C D E F G
Software version

Fa
ilu

re
 f

re
q

ue
nc

y
[/

a]

prediction calculated

The differences in the variances of distributions
are caused by the different amounts of data for
different software versions.

6.3 Analysis of results
Significant differences between the posterior fail-
ure frequency distributions of the two approaches
used for the influence of software changes can’t be
detected. With the conservative approach the fail-
ure frequency distributions of different software
versions seems to be more monotonous, i.e. the

Figure 10. Predictive and calculated posterior 0,025–0,5–0,975 percentiles for failure frequency distributions
of different software versions for the neutral approach.

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

A B C D E F G

Software version

Fa
ilu

re
 f

re
q

ue
nc

y
[/

a]

prediction calculated

estimates for the early software versions are bet-
ter than in the neutral approach and vice versa
for the later software versions. However, the dif-
ference between the two approaches for the fail-
ure frequency of the last and crucial software ver-
sion is negligible as can be verified in Figures 7
and 8. Explanation to the small difference in the
last software version can most probably be found
from the amount, and therefore, the dominant role
the data has reached in the assessment.

From the predictive estimates it can be seen

24

S T U K - Y TO - T R 1 9 8

that the prior estimates given by the experts are
rather optimistic. Reasons for this can be found
from the facts that the system under assessment
is based on its predecessors and that the assess-
ment was made long after the development of the
system and information about the operational
experience of the system was available to the
experts. It is evident that these facts have strong
influence to the estimates given by the experts,
even though it was emphasised before the inter-
view process to the experts that these matters
should be excluded from the expert judgements.

Interesting detail consolidating this belief is that
the posterior failure frequency distribution of the
last software version matches pretty nicely with
the prior estimation of the first software version.

Another observation that can be made from the
predictive estimations is that in spite of the opti-
mistic prior for the first software version the
conservative approach on the influence of soft-
ware changes seems over pessimistic. There is
clear statistical evidence that improvement be-
tween most of the software versions have been
achieved.

S T U K - Y TO - T R 1 9 8

25

Before the actual interview process several con-
versations about the system under assessment
were carried out between the assessment develop-
ers and the experts giving judgements about the
system. Purpose of these conversations was to
modify the assessment process suitable for the
particular target system. One of the main goals in
the interviews of the expert judgement process
was to ground the questions asked and discussed
during the interview to current guidebooks, rec-
ommendations and standards of developing high
quality software-based systems. This wasn’t an
easy task since there weren’t many practical ex-
amples on how to implement the valid recommen-
dations and standards to concrete questions. A
guidebook turning out to be useful in forming the
interview questions was a guidebook published by
the Finnish Society of Automation [9]. Especially
the example documents at the end of the guide-
book provided good basis for the questions in the
interview. There is no doubt that the questions
considered in the interview and presented in Ap-
pendix 1 would cover all the aspects of developing
a high quality software-based system. Instead, the
questions should be seen as a structured way of
recalling the history and building an overview
about the quality of the software-based system
under estimation.

The comparison of the current standards for
safety-critical software-based systems and the
system under assessment was rather difficult
matter. One main reason for this was that suitable
standards for safety-critical software-based sys-
tems have mainly been drawn up after the devel-
opment of the target system and therefore explicit
considerations of such standards in the develop-
ment phase of the system was not possible. Anoth-
er main reason was that the motor protection
relay SPAM 150 C wasn’t explicitly considered to
be a safety-critical application but only an appli-

7 Discussion

cation for which high reliability was required.
Therefore, an important phase of explicit clarifica-
tion of safety requirements for the system wasn’t
carried out in a sense recommended for example
in safety standard IEC 61508. To ensure the
correct operation and high reliability of the relay
developer’s own quality assurance methods were
followed in the development process. Also the
documentation involved with the development
process was carried out in a way specified by the
developer and not by a specific safety standard.
All of the factors mentioned above had an influ-
enced to the fact that the comparison of the
answers and the documentation of the system
development process to the requirements of cur-
rent standards of safety-critical software-based
systems was a rather troublesome matter.

The decision analytic method used in the as-
sessment to build the experts prior estimation for
the software-based system was applied in a rather
informal way. Extra effort wasn’t spent to the
consideration of things like heuristics, biases and
dependability of preferences in the questions and
given answers. More analytical interview process
would surely have been beneficial, but on the
other hand, as mentioned already in the begin-
ning the main emphasis of the work was on the
methodological analysis of the reliability assess-
ment and therefore an overview kind of interview
process was sufficient for the assessment.

As mentioned in section 5.2 there were some
trouble in converting the score values given by the
experts to failure distributions of the system.
Main reason for the inconvenience was the im-
proper approach taken by the developers of the
assessment method, which was corrected later in
the assessment process. On the other hand it
could be noted that more practice on giving the
reliability estimation of a system in a probabilis-
tic way would be appropriate. One way of achiev-

26

S T U K - Y TO - T R 1 9 8

ing this goal would be by taking an assessment
method as shown here to the regular activity in
the software development process. In subsection
6.3 it was suspected that the expert weren’t actu-
ally considering the reliability of the first soft-
ware version, as they should have, but merely the
latest software versions of the system. If this is
really the case the results indicate that the ex-
perts have rather good intuition about the relia-
bility of the system and therefore it is justified to
use expert judgement in the reliability estimation
of a software-based system. However, if the opera-
tional experience evidence is as strong as it is
assumed in the case study the evidence from the
expert judgements used for the building of the
prior distribution has only a small influence to the
final reliability estimation.

The most significant shortage in the assess-
ment presented in the report is that the opera-
tional experience data used hasn’t gone through a
specific analysis. The reliability of software-based
system is a property of the operational environ-
ment as well as the system itself. Although there
may be faults in the software, these faults can
cause a loss of safety function only when certain
inputs occurring with very low probability are
introduced to the system. In other words, the

reliability of software-based system depends on
the operational profile, which as the probability
distribution of input sequences varies from one
environment to another. To make the assessment
more complete the operational experience data
should be analysed in more specifics to be able to
justify the results for a certain operational envi-
ronment.

Other area of improvement in the network
model presented is in the influence of software
changes. The results shown in the previous chap-
ter indicate that there was clear statistical evi-
dence on improvement between most of the soft-
ware versions and therefore the prior approaches
taken, especially in the conservative case, was too
pessimistic. Through finding a balance between
the prior approaches and the actions made in
changing the software it is possible to find the
best practices for the software version manage-
ment. The process for finding the best practices of
software version management is a long learning
process. The method described in the report can
provide a good statistical approach for supporting
the learning process of software version manage-
ment and therefore supporting the development of
high quality software.

S T U K - Y TO - T R 1 9 8

27

The approach used in the report for the reliability
estimation of software-based system seems ex-
tremely promising. Despite the slight inconven-
iences confronted in the assessment process with
converting the score values given by the experts
to corresponding failure probability distributions
the experience on the assessment method is very
encouraging. The experience and results obtained
from the assessment process support our prior be-
lief on the fact that one of the most suitable ways
to estimate the reliability of software-based sys-
tem involving diverse evidence from various kinds
of sources is based on the use of Bayesian statis-
tics. Especially for large systems where the sys-
tem and the software contained by the system
extends to the limits where the system can’t be
modelled or tested presumably completely it is
reasonable to rely on such assessment methods as
presented in this report. The example case study
on a quantitative reliability estimation of a soft-
ware-based system described in the report utilises
mainly the evidence from the system development
process and the operational experience of the sys-
tem. Due to the limitation of the evidence sources
the assessment presented gives a reliability esti-
mation of the target system from a certain angle
only. To obtain a full comprehension on the relia-
bility of a software-based system a variety of dif-

8 Conclusions

ferent analyses like the one shown in the report
should be practised.

The assessment procedure presented enable a
flexible use of qualitative and quantitative ele-
ments of reliability related evidence. At the same
time the assessment method is a concurrent way
of reasoning one’s beliefs and references about the
reliability of the system. It is therefore justified to
claim that a reliability estimation method shown
here can provide a strong support for the licensing
process of digital I&C systems. Most of all the
reliability estimation method establishes a solid
ground for the communication between different
participants of a licensing process.

The assessment method shown in the report is
everything but complete. Further research needs
to be carried out particularly in developing the
interview process of the assessment so that the
questions cover all the relevant areas of develop-
ing a high quality software-based system. The
questions and interview process should be formu-
lated so that if necessary the grounds for the
answers given by an expert can be traced back to
the documentation of the system. The operational
experience and the operational environments
where the operational experience have been col-
lected from is also a significant area of additional
research effort.

28

S T U K - Y TO - T R 1 9 8

References

[1] Helminen A. Reliability estimation of safety-
critical software-based systems using Bayesian
networks. STUK-YTO-TR 178. Radiation and
Nuclear Safety Authority, Helsinki 2001: 1–23.

[2] Motor protection relay SPAM 150 C -product
description. ABB Substation Automation Oy.
http://fisub.abb.fi/products/bghtml/spam150.htm.

[3] Gelman A, Carlin JB, Stern HS, Rubin DB.
Bayesian data analysis. Chapman & Hall, Lon-
don 1995: 1–526.

[4] Box G, Tiao G. Bayesian inference in statistical
analysis. Addison-Wesley Publishing Company,
Reading 1972: 1–588.

[5] Pulkkinen U, Holmberg J. A method for using
expert judgement in PSA. STUK-YTO-TR 129.
Radiation and Nuclear Safety Authority, Hel-
sinki 1997: 1–32.

[6] Korhonen J, Pulkkinen U, Haapanen P. Statis-
tical reliability assessment of software-based
systems. STUK-YTO-TR 119. Radiation and
Nuclear Safety Authority, Helsinki 1997: 1–31.

[7] Spiegelhalter D, Thomas A, Best N, Gilks W.
BUGS 0.5 Bayesian inference using Gibbs sam-
pling manual (version ii). MRC Biostatistic
Unit, Cambridge 1996: 1–59.

[8] Pulkkinen U. & Simola K., Bayesian Ageing
Models and Indicators for Repairable Compo-
nents, Helsinki University of Technology, Es-
poo 1999: 1–23.

[9] Ajo R, Hakonen S, Harju H, Järvi J, Kaskes K,
Lenardic E, Niukkanen E, Nurminen T, Rita-
la P, Tolppanen M, Tommila T. Quality in auto-
mation—Best practices. Finnish Society of Au-
tomation, Helsinki 2001: 1–245. (in Finnish)

S T U K - Y TO - T R 1 9 8

29

APPENDIX 1 QUESTIONS OF THE INTERVIEW

Project control and quality
• Did project have a quality plan?
• How would you describe the quality plan?

What were the good/bad things in it?
• What kind of quality control methods did the

project group have during the project?
• How well/badly were the quality control meth-

ods carried out in the project?
• Did the project have a project plan?
• How would you describe the project plan? Were

all the main elements included in the project
plan and how well did the project plan consid-
ered the needs of the system under develop-
ment?

• How well/badly was the project plan carried
out?

Requirement specification phase
• Was all the functionality of the system de-

scribed in a functional specification?
• How would you describe the functional specifi-

cation? What made it good/bad?
• Was the criticality of the system functions

evaluated anyhow? How comprehensive was
the evaluation? How were the results of the
evaluation used? Was the possibility of the
system functioning in safety critical applica-
tions considered?

• How well/badly would you describe the func-
tional specification covered all the require-
ments set for the system in the user specifica-
tions and system requirements?

Design phase
• Was the system described in design specifica-

tions?
• How would you describe the design specifica-

tions? What made them good/bad? How com-
prehensive were the design specifications?

• What kinds of tools were used during the
design phase? How would you describe the
tools used? What made them good/bad?

• How well/badly would you describe the design
specifications cover all the requirements set
for the system in the functional specification?

Implementation phase
• How well/badly was the system implementa-

tion carried out? What made the implementa-
tion good/bad?

• What kinds of tools were used in the system
implementation? How would you describe the
tools used? What made the tool good/bad?

• How well/badly did the implementation follow
the design specifications?

Testing phase
• Did the system development process have a

test plan?
• How well/badly would you describe the test

plan covered the system implementation?
What made the test plan good/bad?

• How well/badly was the test plan followed in
the development process?

• When was the test plan generated? Were the
test plan and the test cases in accordance with
quality plan, functional specifications and de-
sign specifications?

30

S T U K - Y TO - T R 1 9 8

APPENDIX 2 THE BAYESIAN NETWORK IN THE ASSESSMENT

In
v
V
a
rF
G

M
u
F
G

In
v
V
a
rE
F

M
u
E
F

In
v
V
a
rD
E

M
u
D
E

In
v
V
a
rC
D

M
u
C
D

In
v
V
a
rB
C

M
u
B
C

In
v
V
a
rA
B

M
u
A
B

O
m
e
g
a
F
G

T
h
e
ta
G

X
7

t7
L
a
m
b
d
a
G

L
a
m
b
d
a
G

t7

X
6

O
m
e
g
a
E
F

T
h
e
ta
F

L
a
m
b
d
a
F

t6
L
a
m
b
d
a
F

t6

O
m
e
g
a
D
E

T
h
e
ta
E

X
5

t5
L
a
m
b
d
a
E

L
a
m
b
d
a
E

t5

O
m
e
g
a
C
D

T
h
e
ta
D

X
4

t4
L
a
m
b
d
a
D

L
a
m
b
d
a
D

t4

O
m
e
g
a
B
C

T
h
e
ta
C

X
3

t3
L
a
m
b
d
a
C

L
a
m
b
d
a
C

t3

X
2

t2
L
a
m
b
d
a
B

L
a
m
b
d
a
B

t2

O
m
e
g
a
A
B

T
h
e
ta
B

X
1

t1
L
a
m
b
d
a
A

L
a
m
b
d
a
A

t1

T
h
e
ta
A

In
v
V
a
r

M
u

O
p
In
v
V
a
r[
]

Z
O
p
M
u
[]

C
la
s
s
[1
:4
]

S T U K - Y TO - T R 1 9 8

31

APPENDIX 3 WINBUGS-CODE OF THE BAYESIAN NETWORK

model;

{

 Z ~ dcat(Class[1:4])

 Mu <- OpMu[Z]

 InvVar <- OpInvVar[Z]

 ThetaA ~ dnorm(Mu,InvVar)

 log(LambdaA) <- ThetaA

 t1LambdaA <- t1 * LambdaA

 X1 ~ dpois(t1LambdaA)

 ThetaB <- ThetaA + OmegaAB

 OmegaAB ~ dnorm(MuAB,InvVarAB)

 log(LambdaB) <- ThetaB

 t2LambdaB <- t2 * LambdaB

 X2 ~ dpois(t2LambdaB)

 log(LambdaC) <- ThetaC

 t3LambdaC <- t3 * LambdaC

 X3 ~ dpois(t3LambdaC)

 ThetaC <- ThetaB + OmegaBC

 OmegaBC ~ dnorm(MuBC,InvVarBC)

 log(LambdaD) <- ThetaD

 t4LambdaD <- t4 * LambdaD

 X4 ~ dpois(t4LambdaD)

 ThetaD <- ThetaC + OmegaCD

 OmegaCD ~ dnorm(MuCD,InvVarCD)

 log(LambdaE) <- ThetaE

 t5LambdaE <- t5 * LambdaE

 X5 ~ dpois(t5LambdaE)

 ThetaE <- ThetaD + OmegaDE

 OmegaDE ~ dnorm(MuDE,InvVarDE)

 t6LambdaF <- t6 * LambdaF

 log(LambdaF) <- ThetaF

 ThetaF <- ThetaE + OmegaEF

 OmegaEF ~ dnorm(MuEF,InvVarEF)

 X6 ~ dpois(t6LambdaF)

 log(LambdaG) <- ThetaG

 t7LambdaG <- t7 * LambdaG

 X7 ~ dpois(t7LambdaG)

 ThetaG <- ThetaF + OmegaFG

 OmegaFG ~ dnorm(MuFG,InvVarFG)

}

	Title page
	Abstract
	Foreword
	Contents
	1 Introduction
	2 Description of the assessment target and assumptions
	2.1 Target of the case study
	2.2 Assumptions in the assessment

	3 Description of assessment process
	3.1 Overview
	3.2 Prior estimation
	3.3 Operational experience
	3.4 Version management

	4 Bayesian network model
	4.1 Overview
	4.2 Prior for first software version
	4.3 Implementing operational experience of software version
	4.4 Implementing influence of software changes

	5 Description of evidence
	5.1 Overview
	5.2 Expert judgements
	5.2.1 Steps 1 to 3
	5.2.2 Step 4
	5.2.3 Step 5
	5.2.4 Step 6

	5.3 Operational experience
	5.4 Changes between software versions

	6 Results
	6.1 Failure frequency
	6.2 Predictive estimation
	6.3 Analysis of results

	7 Discussion
	8 Conclusions
	References
	APPENDIX 1 Questions of the interview
	APPENDIX 2 The Bayesian network in the assessment
	APPENDIX 3 WinBUGS-code of the Bayesian network

