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Summary
Clay-based buffer and tunnel backfill materials are important barriers in the 
KBS-3 repository concept for final disposal of spent nuclear fuel in Finland. One 
issue that is relevant to material properties is the degree to which different 
bentonite compositions can be regarded as interchangeable. In Posiva’s current 
repository design, the reference bentonite composition is MX-80, a sodium 
montmorillonite dominated clay. Posiva would like to be able to use bentonite with 
Ca-montmorillonite as the dominant clay mineral. However, at this stage, it is 
not clear what supporting data need to be acquired/defined to be able to place the 
state of knowledge of Ca-bentonite at the same level as that of Na-bentonite.

In this report, the concept of bentonite exchangeability has been evaluated through 
consideration of how bentonite behaviour may be affected in six key performance-relevant 
properties, namely 
•	mineralogical composition and availability of materials 
•	hydraulic conductivity 
•	mechanical and rheological properties 
•	long-term alteration 
•	colloidal properties 
•	swelling pressure.

The report evaluates implications for both buffer and backfill.

Summary conclusions are drawn from these sections to suggest how bentonite 
exchangeability may be addressed in regulatory assessments of engineered barrier design 
for a future geological repository for spent fuel in Finland. Some important conclusions 
are: 
•	There are some fundamental differences between Ca- and Na-bentonites such as 
colloidal behaviour, pore structure and long-term alteration that could affect the 
exchangeability of these materials as buffer or backfill materials and which should be 
further evaluated. 
•	Additional experimental data are desirable for some issues such as long-term alteration, 
hydraulic properties and swelling behaviour. 
•	The minor mineral content of bentonites is very variable, both between different 
bentonites and within the same bentonite type. It is not clear whether these 
minerals are performance-critical or not. An assessment of this issue is desirable.

Posiva’s view that assessments of the exchangeability of different bentonite types as 
buffer materials should be based on performance requirements for this engineered 
barrier seems reasonable, but the level of understanding needed to adequately support 
such assessments is not clear and would seem to depend on the types of requirements 
being considered. Assessments addressing long-term safety requirements may be the 

SAVAGE David (Savage Earth Associates Ltd), ARTHUR Randy (Intera Inc). Exchangeability of 
bentonite buffer and backfill materials. STUK-TR 12. Helsinki 2012. 56 pp.

Keywords:	 engineered barrier, canister buffer, tunnel backfill, bentonite, montmorillonite, 
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most challenging because these requirements relate to a target state of the buffer 
that will not be attained until hundreds or thousands of years have elapsed since the 
initial state, and to subsequent interactions involving the buffer with continuously 
evolving near-field conditions. Should such assessments be based in whole or in part 
on experimental testing, then it is important to consider whether the experimental 
conditions are appropriate and defensibly bounding with respect to conditions expected 
in the near field over long periods of time. Assessments based on modelling should 
consider whether the models adequately represent thermal, mass-transport, chemical/
mineralogical and mechanical processes controlling bentonite-water interactions, whether 
the reliability of the models has been verified to the extent possible in relation to relevant 
experimental and natural systems studied, and whether model results can be sensibly 
related to safety-relevant physical, thermal and rheological properties of the buffer.
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Tiivistelmä
Saviin perustuvat puskuri- ja tunnelitäyttömateriaalit ovat suunnitellulle KBS-3 
loppusijoituskonseptille tärkeitä päästöesteitä. Materiaaliominaisuuksia tutkittaessa 
tärkeä kysymys on, missä määrin saatavilla olevat eri bentoniittimateriaalit ovat 
keskenään vaihtokelpoisia. Posiva on suunnittelulähtökohtiensa vertailutasoksi 
määritellyt Na-montmorilloniittivaltaisen saven, ns. MX-80 bentoniitin. Posiva 
haluaa varata mahdollisuuden käyttää myös Ca-montmorilloniittivaltaista savea 
sulkurakenteissaan. Bentoniitti-materiaalien vaihdettavuus edellyttää kuitenkin 
lisätietojen hankkimista Ca-bentoniitista, jotta tietämys siitä saataisiin samalle tasolle 
kuin Na-bentoniitin.

Tässä raportoinnissa todetaan seuraavien näkökohtien olevan tärkeitä bentoniitteja 
tarkasteltaessa: 
•	Ca- ja Na-bentoniitin kesken on joitakin olennaisia eroja kuten kolloidinen 
käyttäytyminen, huokosrakenne ja muuttumisilmiöt aikojen kuluessa. Nämä erot voivat 
vaikuttaa kapselipuskuri- ja tunnelitäyttömateriaalien vaihdettavuuteen ja näiden 
erojen merkitystä tulisi edelleen arvioida. 
•	Kokeellisista tutkimuksista saatavat tulokset ovat toivottavia erityisesti pitkällä 
aikavälillä bentoniiteissa tapahtuvien mineralogiaan (muuttumiseen), hydraulisiin 
ominaisuuksiin ja paisuntaominaisuuksiin liittyvien muutosten selvittämisessä. 
•	Bentoniittien aksessorinen mineraalisisältö on hyvin vaihteleva sekä eri bentoniittien 
välillä että myös saman bentoniittityypin sisällä. Aksessoristen mineraalien 
turvallisuusmerkityksestä ei ole selvää käsitystä. Arviot ovat toivottavia.

Posivan mukaan vaihtokelpoisuuden arviointi tulee perustua rakennettujen 
päästöesteiden toimintakykyvaatimusten täyttymiseen. Näkemys on perusteltu, 
mutta samalla arviointiin tarvittavan riittävän ymmärryksen osittaminen ei ole 
selvää ja näyttää riippuvan siitä mitä tai millaisia vaatimuksia tarkastellaan. 
Pitkäaikaisturvallisuuden osittamiseen liittyvät vaatimukset ovat haasteellisimpia, 
sillä ne liittyvät päästöesteiden tavoitetiloihin, jotka saavutetaan esimerkiksi puskurin 
tapauksessa vasta satojen tai tuhansien vuosien kuluttua. Jos arvioinnit perustuvat 
kokonaan tai osittain kokeelliselle tutkimukselle, on tärkeää osoittaa, että koejärjestelyt 
ovat perusteluja tulevaisuuden odotettavissa oleviin olosuhteisiin nähden. Mikäli 
arvioinnit perustuvat mallinnuksiin, tärkeiksi nousevat kysymykset siitä, huomioivatko 
mallit relevantit fysikaaliskemialliset kytkökset ja ovatko ne riittävän verifioituja 
käytettävissä oleviin kokeellisiin ja luonnonanalogioiden tutkimuksiin. 

SAVAGE David (Savage Earth Associates Ltd), ARTHUR Randy (Intera Inc). Bentoniittimateriaalien 
vaihdettavuus loppusijoituskonseptin kapselipuskurissa ja tunnelitäytössä. STUK-TR 12. Helsinki 2012. 
56 s.
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turvallisuusperustelu, toimintakykytavoite
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1	 Introduction

Clay-based buffer and tunnel backfill materials are 
important barriers in the KBS-3 repository concept 
for final disposal of spent nuclear fuel in Finland 
(Posiva, 2010). Properties of these materials that 
can affect repository performance include:
•	 low hydraulic conductivity that reduces trans-

port of corrodants to the canister and transport 
of radionuclides to the geosphere;

•	 a low chemical activity of water that prevents 
the survival of microorganisms that could be 
detrimental to the long-term integrity of the 
canister;

•	 a swelling pressure to establish and sustain 
contacts with the host rock and the canister; and

•	 a sufficiently high deformability to absorb a 
certain amount of rock movements, preventing 
the canister from being ruptured.

One issue that is relevant to the above material 
properties is the degree to which different bentonite 
compositions can be regarded as interchange-
able. In Posiva’s current repository design, the 
reference bentonite composition is MX-80, a sodium 
montmorillonite-dominated clay. Posiva would like 
to be able to use bentonite with Ca-montmorillonite 
as the dominant clay mineral. However, at this 
stage, it is not clear what supporting data need to 
be acquired/defined to be able to place the state of 
knowledge of Ca-bentonite at the same level as that 
of Na-bentonite.

The report evaluates implications for both buffer 
and backfill. The design of the buffer is described 
in TKS-2009 (Posiva, 2010) and Juvankoski and 
Marcos (2009) (Figure 1) where buffer functions are 
described as:

Figure 1. The KBS-3V (left) and KBS-3H (right) are alternative realisations of the KBS-3 spent fuel 
disposal method. KBS-3V is the reference variant in the construction licence application and its ac-
companying safety case. (from Posiva, 2010, p285).
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•	 to isolate the canister from the near-field bedrock 
and processes therein;

•	 to support the canister in its installation posi-
tion;

•	 to absorb minor near-field rock movements, and
•	 to prevent flow of groundwater in the gap 

between the canister and the bedrock in such a 
way that mass transport between the bedrock 
and the canister occurs mainly by diffusion.

The buffer material is high-grade compacted ben-
tonite. The reference bentonite type is MX-80, a 
Wyoming sodium bentonite with a montmorillonite 
content above 75%. Posiva believes that as long 
as a bentonite type contains greater than 75% 
montmorillonite, it can be considered as a suitable 
candidate for substitution for MX-80 in the future 
(Juvankoski and Marcos, 2009).

According to TKS-2009 (Posiva, 2010, p188) the 
requirements for the buffer are:
•	 sufficiently low hydraulic conductivity in order 

to prevent advection;
•	 sufficient swelling pressure in order to ensure 

tightness and self-sealing ability as well as to 
prevent microbiological activity and the sinking 
of the canister;

•	 sufficiently small pore structure in order to pre-
vent the migration of radionuclides with colloids.

The buffer must also guarantee sufficient protec-
tion of the canister against small rock dislocations, 
bearing in mind the canister properties, the selected 
buffer material and the rock conditions prevailing 
at Olkiluoto. The buffer properties themselves must 
not, as a consequence of the heat released from the 
canister, change to an extent that would be detri-
mental (Posiva, 2010, p188).

A complication of discussing the applicability 
of exchangeability of clay to the tunnel backfill is 
that a final design has yet to be chosen by Posiva 
(or SKB). The backfill concept currently consists of 
a foundation bed, and pre-compacted blocks and 
pellets (Hansen et al., 2009) (Figure 2). According 
to Hansen et al. (2009), three different materials 
are being considered for the compacted clay blocks 
which constitute the bulk of the backfill:
•	 Friedland clay, with an estimated maximum 

swelling clay content of 30%.
•	Milos B bentonite clay (Ibeco RWC), with an 

estimated amount of swelling clay of 50–60%.

•	 A mixture of bentonite and ballast, with a mini-
mum bentonite content of 40% (of which over 
70% is composed of swelling minerals).

Hansen et al. consider that the target state will be 
achieved once the backfill has been completely satu-
rated with water and the functional requirements 
as a result of the saturation have been met. The 
saturation may last from 50 to 1000 years. Erosion, 
piping, or defects in the self-sealing process may 
inhibit achievement of the target state (Hansen et 
al., 2009).

The target functions for the backfill are (Hansen 
et al., 2009):
•	 to prevent the creation of preferential flow paths,
•	 to keep the buffer in place in the deposition hole,
•	 to support the surrounding rock, and
•	 not to jeopardise the function of canister, buffer 

or bedrock.

According to Posiva, the prevention of flow paths 
has been identified as the key factor in system 
evolution and performance (Hansen et al., 2009). 
If there are no preferential flow paths, the ground-
water cannot rapidly transport potentially harmful 
components through the backfill to the buffer or 
canister. One of the most probable places where 
preferential flow path(s) could develop is at the 
interface between the backfill and the rock. The 
backfill needs a tight contact with the surrounding 
host rock in order to function as desired (Hansen et 
al., 2009). In order to achieve such a tight contact, 

Figure 2. Schematic cross section of a backfilled tunnel. 
The three main components of the block backfill are 
1) pre-compacted backfill blocks, 2) pellet filling and 
3) material placed underneath the blocks to provide 
stable foundation for the block assemblage. From Keto 
et al. (2009).
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the backfill must develop a swelling pressure of 
100 kPa (Hansen et al., 2009).

1.1	 Structure of the report
In this report, the concept of bentonite exchange-
ability has been evaluated through consideration of 
how bentonite behaviour may be affected in six key 
performance-relevant properties, namely:
•	mineralogical composition and availability of 

materials
•	 hydraulic conductivity

•	 mechanical and rheological properties
•	 long-term alteration
•	 colloidal properties
•	 swelling pressure.

Summary conclusions are drawn from these sec-
tions to suggest how bentonite exchangeability 
may be addressed in regulatory assessments of 
engineered barrier design for a future geological 
repository for spent fuel in Finland.
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2	 Mineralogical composition and 
availability of materials

2.1	 Buffer
The mineralogical composition of clays used for 
the buffer is an essential issue in understanding 
the long-term evolution of bentonite materials and 
also affects, among others, the composition of pore 
water, the susceptibility for erosion, and transport of 
radionuclides (Kumpulainen and Kiviranta, 2010). 
Consequently, mineralogical composition affects 
the designs of buffer and backfill components. Cur-
rently, the sole mineralogical aspect of the buffer 
design is that it should contain more than 75% of 
montmorillonite (Posiva, 2010, p364). This implies 
that any type of montmorillonite (Na, Ca, K, Mg) 
would meet this design requirement.

Posiva report that MX-80 sodium bentonite has 
been used in buffer block manufacturing tests and 
in material tests (Posiva, 2010, p364). Calcium 
bentonite (Deponit CaN) from the Greek island of 
Milos has also been tested as an alternative type of 
bentonite. These materials are also options for the 
raw material for the pellets possibly used in the 
buffer structure. China and India have also been 
considered as potential bentonite suppliers (Posiva, 
2010, p193). Posiva state that the final selection of 
bentonite will be governed by quality, the security 
of supply and availability that spans a sufficiently 
long period of time. A study has been conducted on 
this issue (Ahonen et al., 2008).

The reference bentonite selected is MX80, which 
is the commercial name of a Wyoming sodium 
bentonite with montmorillonite content above 75%. 
Chemical analyses of some candidate bulk materi-
als (from Kumpulainen and Kiviranta, 2010) are 
shown in Table 1. This shows, inter alia, that:
•	Wyoming bentonites are relatively silica-rich (~ 

65% SiO2) compared with others (< 60% SiO2), 
but it should be noted that they contain only 15% 

quartz. Silica can be redistributed in the buffer 
in the early thermal period due to its increase in 
solubility with temperature.

•	 Indian bentonites are extremely rich in Fe2O3 
(> 10%), compared with other bentonites (< 5%). 
The chemical reduction of ferric iron in the 
repository can lead to an increase in clay layer 
charge and a decrease in swelling (e.g. Karnland 
and Birgersson, 2006).

•	 Greek (> 5% CO3) and Friedland (> 2% CO3) ben-
tonites are relatively rich in carbonate compared 
with the other bentonites (< 1% CO3). Higher 
carbonate contents are associated with a higher 
pH buffer capacity (e.g. Arcos et al., 2006).

•	 Organic carbon is highest in the Friedland ben-
tonites (> 0.25%). This can contribute not only to 
controlling redox potential but can also act as a 
potential complexant of radionuclides.

•	 Sulphide is highest in the Greek bentonites 
(> 0.5% S). Sulphide can contribute both to 
buffering of redox potential and act as a supply 
of corrodants for the copper canister.

The mineralogical analyses of the bulk materials 
are shown in Table 2. This shows that:
•	 smectite content is highest in the Wyoming 

bentonites (> 75%) and lowest in the Friedland 
bentonites (< 25%).

•	 Quartz content is very high in the Friedland 
bentonites (> 20%).

•	 Pyrite content is highest in the Greek bentonites 
(> 1%).

The information in Table 2 therefore suggests that 
MX-80, Deponit CaN (‘AC200’), and possibly Kutch 
(‘Basic Star’) are the only bentonites that would 
fulfil the design requirements set out by Posiva.
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Table 1. Chemical compositions of bulk bentonite materials (from Kumpulainen and Kiviranta, 2010).

SiO2 Al2O3 Fe2O3 FeO TiO2 MgO CaO Na2O K2O CO2 Org C SO3 S LOI H2O
Wyoming, USA
ABM MX-80 65.37 18.70 3.59 0.36 0.15 2.34 1.29 2.19 0.53 0.79 0.14 0.14 0.20 5.36 9.49
Volclay 64.32 19.00 3.30 0.48 0.15 2.56 1.66 2.03 0.62 0.99 0.15 0.08 0.18 5.70 8.40
WyMX-80 64.88 18.92 3.28 0.37 0.15 2.41 1.23 2.05 0.59 0.62 0.13 0.07 0.22 5.90 9.76
Milos, Greece
ABM DepCaN 57.66 16.96 4.71 0.20 0.75 3.26 5.04 0.90 0.98 5.12 0.02 0.35 0.62 8.94 12.79
ABM DepCaN2 57.71 17.02 4.66 0.28 0.75 3.28 5.09 0.89 0.91 4.90 0.01 0.28 0.62 8.78 12.79
AC200 56.38 17.07 5.01 0.42 0.78 3.49 4.73 2.97 0.59 5.60 0.00 0.20 0.39 8.16 9.88
Kutch, India
ABM Asha 51.15 21.23 13.40 0.07 1.20 2.02 0.73 2.02 0.06 0.36 0.02 0.01 0.02 8.11 11.71
Basic Starbentonite 54.21 17.44 12.63 0.54 1.35 2.78 1.63 1.40 0.14 0.68 0.01 0.24 0.16 7.71 8.81
Ca-Starbentonite 58.24 15.27 11.52 0.01 1.52 3.14 1.67 1.62 0.21 0.32 0.00 0.25 0.17 6.65 12.44
HLM-Starbentonite 55.31 15.48 13.52 0.99 1.66 2.46 1.21 2.45 0.22 0.97 0.00 0.04 0.03 6.67 14.72
Friedland, Germany
ABM Friedland 60.61 17.28 4.46 2.62 0.95 1.93 0.48 1.09 2.94 2.40 0.31 0.53 0.39 7.25 4.01
SM Friedland 60.17 17.41 5.28 2.24 0.93 2.06 0.63 1.19 2.67 2.03 0.27 0.70 0.47 0.95 7.72

Table 2. Mineralogical composition of bentonites investigated by Kumpulainen and Kiviranta using the Rietveld 
method (from Kumpulainen and Kiviranta, 2010).

Minerals
Wyoming, USA Milos, Greece Kutch, India Friedland, Germany

ABM 
MX80

WyMX80 Volclay
ABM 

DepCaN
AC200

ABM 
Asha

Basic 
Star

HLM Star Ca-Star
ABM 

Friedland
SH 

Friedland
Smectite 83.7 76.3 76.3 68.0 76.8 55.1 73.0 65.6 81.3 19.2 23.9

Illite 0.1 1.8 1.8 8.7 5.7 13.4 7.0 11.6 2.6 32.2 34.8

Kaolinite 22.7 4.0 5.8 2.2 9.7 8.5

Calcite 0.5 0.7 0.7 7.2 5.8 0.7 1.9 1.1 0.9

Muscovite 5.3 8.3 8.3 4.7 4.7 4.9 3.0 4.8 5.2 4.3

Dolomite 1.1 0.4

Quartz 3.8 4.8 4.8 0.7 0.2 0.8 2.2 2.3 28.5 23.1

Plagioclase 1.5 2.3 2.3 1.5 0.0 1.4 0.5 2.9 0.5 0.5 0.9

Siderite 2.7 1.6

Cristobalite 1.9 0.4 0.6 0.4 0.0 0.3

Tridymite 2.6 1.6 1.6 2.8 1.7 0.0 0.4 0.3 0.2

Gypsum 0.7 1.2 1.2 1.6 1.2 0.9 1.5 1.2 1.6 1.2 2.0

Goethite 1.0 0.4 3.1 1.8 4.5 1.4

Hematite 0.4 0.4 0.5 0.7 0.3 1.5 0.5 0.6

Maghemite 1.6 1.5 0.4 0.5

Magnetite 1.2 1.4 1.4 1.0 0.8 0.1

Anatase 0.1 0.0 0.1 0.5 0.3 0.7 0.7 0.9 0.9

Pyrite 0.7 0.8 0.8 0.9 1.4 0.7 0.8

Zircon 0.1 0.1
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Table 3. Structural formulae and layer charge data for smectites in bentonites investigated by Kumpulainen and 
Kiviranta (2010).

Bentonite Formula Tet charge Oct charge Total charge

Wyoming

MX-80 Na0.49Ca0.13Mg0.05Al2.99Fe3+
0.33Fe2+

0.02Mg0.43Si8.00Al0.00O20(OH)4 0.449 -1.123 -0.674

WyMX-80 Na0.51Ca0.17Mg0.05Al3.11Fe3+
0.39Fe2+

0.03Mg0.52Si7.70Al0.30O20(OH)4 -0.300 -0.425 -0.725

Volclay Na0.54Ca0.16Mg0.06Al3.09Fe3+
0.38Fe2+

0.03Mg0.56Si7.65Al0.35O20(OH)4 -0.351 -0.406 -0.757

Milos, Greece

Deponit CaN Na0.22Ca0.28Mg0.23Al2.91Fe3+
0.44Fe2+

0.01Mg0.57Si8.00Al0.00O20(OH)4 0.055 -0.788 -0.733

AC200 Na0.75Ca0.05Mg0.07 Al2.79Fe3+
0.59Fe2+

0.01Mg0.74Si7.47Al0.53O20(OH)4 -0.534 -0.334 -0.867

Kutch, India

Asha Na0.75Ca0.13Mg0.10Al2.28Fe3+
1.17Fe2+

0.01Mg0.48Si7.67Al0.33O20(OH)4 -0.327 -0.658 -0.986

Basic Star bentonite Na0.41Ca0.24Mg0.15Al2.38Fe3+
1.22Fe2+

0.00Mg0.60Si7.20Al0.80O20(OH)4 -0.805 0.004 -0.801

HLM Star bentonite Na0.66Ca0.11Mg0.09Al2.03Fe3+
1.56Fe2+

0.00Mg0.56Si7.28Al0.72O20(OH)4 -0.724 -0.143 -0.867

Ca-Star bentonite Na0.46Ca0.24Mg0.14Al2.20Fe3+
1.27Fe2+

0.00Mg0.69Si7.37Al0.63O20(OH)4 -0.634 -0.198 -0.832

Friedland, Germany

Friedland Na0.58Ca0.03Mg0.10Al2.22Fe3+
1.09Fe2+

0.18Mg0.59Si7.80Al0.20O20(OH)4 -0.196 -0.515 -0.711

SH Friedland Na0.63Ca0.02Mg0.07Al2.10Fe3+
1.34Fe2+

0.70Mg0.48Si7.14Al0.86O20(OH)4 -0.860 0.141 -0.719
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Clay mineral formulae and layer charge data 
in the bentonites studied by Kumpulainen and 
Kiviranta are shown in Table 3. This shows that:
•	 Indian bentonites have a large amount of ferric 

iron in the octahedral layer of the smectite. As 
pointed out by Karnland and Birgersson (2006), 
possible chemical reduction of this ferric iron 
will lead to a layer charge increase, which could 
accelerate long-term transformation of the clay 
into a non-swelling silicate.

•	 As pointed out by Kumpulainen and Kiviranta, 
the Wyoming smectites are beidellitic mont-
morillonites (octahedral charge > tetrahedral 
charge) and the Kutch smectites are montmoril-
lonitic beidellites (octahedral charge < tetrahe-
dral charge) (e.g. Figure 3).

Table 4 shows results of analyses of different 
batches of Wyoming MX-80 bentonite, delivered in 
1980 (‘WySt’), 1995 (‘WyL1’), 1999 (‘WyL2’) and 2001 
(‘WyR1’ and ‘WyR2’) to SKB (data from Karnland et 
al., 2006) which highlights the variability/consist-
ency of bentonite product delivered in that period. 
It may be seen from Table 4 that:
•	 the montmorillonite content is consistently at or 

above 80 wt%;

•	 As might be expected, there is a large variability 
in minor components such as calcite, gypsum, 
muscovite, plagioclase and tridymite.

Slade et al. (1991) have shown that layer charge af-
fects swelling, with swelling decreasing as the sur-
face density of charge increased. If the clay charge is 
generated in tetrahedral positions, the electrostatic 
attractive force between the interlayer cations and 
the surface will be greater than if the clay charge 
is generated in the more deeply buried octahedral 
positions. Tetrahedrally-developed charge therefore 
plays an important role in controlling the relative 
swelling behaviour of smectites. This interpretation 
is consistent with the behaviour of vermiculites 
which have very high tetrahedral charges and high 
swelling (Skipper et al., 2006).

Cation exchange data for candidate bentonites 
are shown in Table 5 (from Kumpulainen and Kivi-
ranta, 2010). This shows that total cation exchange 
capacities for bentonites from Wyoming, Greece, 
and India are similar at about 0.9–1.0 eq kg-1, 
whereas that for Friedland Clay is about a factor of 
four less. Exchange sites are dominated by sodium 
in the Wyoming, Indian, and German bentonites, 
whereas Deponit CaN from Greece is dominated by 
Ca and Mg.

Table 4. Results of XRD analyses of five consignments of Wyoming MX-80 material (from Karnland 
et al., 2006). The consignments were delivered around 1980 (WySt), 1995 (WyL1), 1999 WyL2), 2001 
(WyR1) and WyR2). Wym denotes the mean value of the six analysed samples. Plus and minus denote 
the maximum deviations from mean values. Data are in wt % of the total material.

WySt WyL1 WyL2 WyR1 WyR1m WyR2 Wym plus minus

Montmorillonite 82.5 79.5 79.8 82.7 83.9 80.0 81.4 2.5 1.9
Illite 0.7 0.8 0.7 0.8 0.8 0.7 0.8 0.1 0.1
Anatase 0.4 0.1 0.2 0.3 0.0 0.2 0.2 0.2 0.2
Calcite 1.3 0.0 0.0 0.1 0.0 0.0 0.2 1.1 0.2
Cristobalite 0.2 1.4 2.5 0.6 0.7 0.0 0.9 1.6 0.9
Goethite 0.0 0.0 0.1 0.0 0.0 0.6 0.1 0.5 0.1
Gypsum 1.4 0.7 0.9 0.7 0.8 1.1 0.9 0.5 0.1
Hematite 0.5 0.9 0.1 0.2 0.4 0.0 0.4 0.5 0.3
Lepidocrocite 0.3 0.5 0.9 0.4 0.4 0.5 0.5 0.4 0.2
Magnetite 0.4 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.1
Microcline 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.2 0.0
Muscovite 2.4 5.1 2.6 3.5 4.4 2.5 3.4 1.7 1.0
Orthoclase 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0
Plagioclase 4.6 2.4 4.0 3.2 2.3 4.7 3.5 1.2 1.2
Pyrite 0.8 0.6 0.6 0.6 0.3 0.9 0.6 0.3 0.3
Quartz 2.6 2.5 3.8 3.0 2.8 3.2 3.0 0.8 0.5
Tridymite 1.7 5.0 3.8 3.9 3.1 5.1 3.8 1.3 2.1
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2.2	 Backfill
According to TKS-2009 (Posiva, 2010, p255), limi-
tations have been set for the composition of the 
backfill material by stating that it must not contain 
organic, oxidising, or other potentially harmful 
agents in amounts that would significantly impair 
the functioning of the buffer, copper canister or the 
surrounding rock. Posiva say that no exact limits 
on the chemical composition of the backfill material 
have been specified so far, but the chemical composi-
tion of the materials will be taken into account in 
safety analyses (Posiva, 2010, p256). The backfill 
of the deposition tunnels comprises pre-compacted 
blocks and pellets that fill the space between the 
blocks and the rock, and a floor backfill which will 
be emplaced separately (Figure 2).

2.2.1	 Foundation bed materials
Two different materials have been selected for the 
candidates of foundation bed materials: a mixture of 
bentonite and ballast (40/60) and bentonite pellets.

The most important properties of the foundation 
bed are the self-sealing capacity and the hydraulic 
conductivity, which should be below 10-10 m s-1. Ac-
cording to Hansen et al. (2009), the swelling ability 
of the floor backfill is less important, as it will be lo-
cated under the blocks whose main function will be 
to produce the swelling pressure. The bentonite and 

ballast mixture will be chosen for its good mechani-
cal properties (Hansen et al., 2009). This means 
that the mixture should have a good resistance 
against erosion, thus minimising the risk of chan-
nel formation from the backfill into the deposition 
hole. Based on preliminary results, the mixture also 
shows sufficient self-sealing phenomena (Hansen et 
al., 2009). Pellets were chosen as another candidate 
material, because it has low permeability, but the 
mechanical instability and compressibility may be 
problematic (Hansen et al., 2009).

The current reference design is a mixture of 
bentonite and crushed rock (40/60). The bentonite is 
high quality sodium activated Ca-bentonite (Milos), 
which has a montmorillonite content of over 75%. 
The crushed rock is from ONKALO and the grain 
size of that is less than 8 mm. The water content of 
the mixture during emplacement is around 17% and 
the dry density of the mixture is 1750 kg m-3 after 
emplacement.

2.2.2	 Block materials
Three candidate materials for the blocks have been 
selected (Hansen et al., 2009):
•	 Friedland Clay from Germany;
•	 bentonite and ballast mixture (40/60%); and
•	Milos B bentonite with a montmorillonite con-

tent of 50–60%.

Table 5. Cation exchange data for bentonites investigated by Kumpulainen and Kiviranta (2010).

% of Exchange Sites CEC

Na K Ca Mg (eq/kg)
Wyoming

MX-80 71 2 20 7 0.84
WyMX-80 69 2 23 7 0.85
Volclay 69 2 21 8 0.89
Milos, Greece
Deponit CaN 29 2 38 31 0.82
AC200 84 2 6 8 0.95
Kutch, India
Asha 76 1 13 10 0.90
Basic Star bentonite 51 1 30 19 0.92
HLM Star bentonite 76 1 13 11 1.00
Ca-Star bentonite 55 1 29 16 1.00
Friedland, Germany
Friedland 76 6 4 13 0.26
SH Friedland 83 5 2 9 0.31
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The current reference design is Friedland Clay, with 
an initial water content of 7–8%. The dry density of 
individual blocks is greater than 2000 kg m-3, and 
the dry density of the block assembly is designed 
to be greater than 1950 kg m-3 after emplacement.

2.2.3	 Pellets
The pellet material considered for the deposition 
tunnel consists of 100% bentonite (Hansen et al., 
2009). The bentonite pellets are made of high-grade 
bentonite that has a montmorillonite content over 
75%.

The reference design is ‘Cebogel’ pellets of com-
pressed high quality sodium activated Ca-bentonite 
(Milos) and an initial water content of 13%. Water is 
added to the mixture in the nozzle during emplace-
ment and the dry density after emplacement is 1000 
kg m-3 with a total water content greater than 26%. 
Chemical analyses (Table 6) for these materials 
show that sulphur contents are broadly comparable, 
whereas no data are currently available for the 
organic carbon content of the Cebogel and Minelco 
products.

Cation exchange data (Table 7) show that ex-
change sites in Cebogel and Minelco are dominated 
by sodium, whereas Milos is dominated by calcium 
and magnesium. The total CEC (Table 7 – as deter-

mined by NH4 acetate) is approximately 1.0 eq kg-1 
for all materials.

2.3	 Analysis
Posiva has yet to decide on a final version of its 
backfill design, so it is difficult to comment in detail 
on the effects of the choice of materials. However, in 
broad terms, the following can be stated:
•	 The swelling pressure of the backfill has to be 

sufficient to support the tunnel walls (> 0.2 MPa 
– Hansen et al., 2009). The Milos B bentonite 
can generate a greater swelling pressure (at a 
given dry density) than either the Friedland 
Clay or compacted blocks of clay/ballast mix. 
Consequently, it is more critical that the instal-
lation densities of the latter are achieved so that 
sufficient swelling pressure can be generated.

•	 In terms of potential harmful impurities, Fried-
land Clay has the highest content of organic 
carbon, whereas Deponit CaN has the highest 
content of reduced sulphur (bisulphide) of the 
various candidate materials. However, without 
some sort of system analysis of safety conse-
quences for different concentrations of these 
impurities, it is difficult to make a judgement 
concerning the relative suitability of the various 
materials.

Table 6. Chemical analyses of Cebogel pellets, Minelco granules and Milos bentonite (from Keto 
et al., 2009).

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 S C
Cebogel pellets 53.1 16.8 5.2 3.8 5.4 3.5 0.6 0.45
Minelco granules 52.0 16.8 5.1 4.0 6.7 2.7 0.8 0.34
Milos bentonite 48.7 17.3 4.8 3.0 9.3 0.7 0.3 0.8 0.47 0.59

Table 7. Exchangeable cation content and cation exchange capacity (CEC) of Cebogel pellets, 
Minelco granules and Milos bentonite (from Keto et al., 2009). Units are cmol kg-1.

Exchangeable Cations CEC
BaCl2 method Ca2+ K+ Mg2+ Na+

Cebogel pellets 13.3 0.9 7 78.3 99.5
Minelco granules 10.9 1.0 8.8 62.2 82.9
Milos bentonite 32.6 1.7 19.9 21.3 75.5
NH4 acetate method Ca2+ K+ Mg2+ Na+

Cebogel pellets 12.2 1.4 8.0 81.3 103.0
Minelco granules 18.7 1.4 13.2 65.7 99.0
Milos bentonite 71.8 1.2 19.9 18.4 111.3
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2.4	 Summary
•	 A wide range of sources and compositions of ben-

tonite is being considered by Posiva. Currently, 
only MX-80, Deponit CaN and possibly Kutch 
‘Basic Star’ meet buffer design requirements of 
containing > 75% smectite.

•	 Different bentonites contain different amounts 
of potentially safety-relevant contaminants such 
as organic carbon and sulphide minerals. Since 
Posiva has not defined specific concentration lim-
its for these impurities, it is difficult to compare 
different bentonite materials with regard to this 
issue.

•	 Kutch bentonites have high contents of ferric 
iron in octahedral layers. Chemical reduction of 
this iron over the long-term would increase layer 
charge and reduce swelling. This feature makes 
this bentonite type less suitable than others 
under consideration.

•	 Different batches of MX-80 analysed over a 
period of twenty years show a consistent content 
of montmorillonite (~ 80 wt%), but a large vari-
ability in the content of some minor minerals.

•	 Bentonites from Wyoming and Greece have a 
cation exchange capacity in the order of 1 eq 
kg-1, but have different charge compensating 
cations. Wyoming and Indian bentonites have 
exchange sites dominated by Na, whereas Greek 
bentonites have sites dominated by Ca and Mg.

•	 Some bentonites have layer charge dominantly 
in octahedral layers (Wyoming, Deponit CaN), 
whereas others (Indian type) have charge domi-
nantly in the tetrahedral layer.

•	 The design for the tunnel backfill is not yet 
certain, so it is difficult to comment other than:
•	 Backfill materials consisting of Friedland 

Clay or clay/ballast mixes require greater 
precision in achieving densities to achieve 
design swelling pressures than bentonites 
such as Milos clay.

•	 It is difficult to make a judgement concerning 
the relative suitability of the various materi-
als with regard to impurities in the absence 
of some sort of system analysis of safety 
consequences for different concentrations of 
these components.
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3	 Hydraulic conductivity

3.1	 Buffer

3.1.1	 Safety functions and performance targets
According to TKS-2009 (Posiva, 2010, p292), “the 
buffer should be impermeable enough that the move-
ment of water is insignificant and that diffusion 
is the dominant transport mechanism for both the 
corrosive agents present in the groundwater that 
may degrade the canisters and for the radionuclides 
that may be released from canisters”.

Posiva’s performance target for fluid transport 
is fulfilled when the hydraulic conductivity is less 
than 10-12 m s-1. If the buffer saturated density falls 
within the target range (1950–2050 kg m-3), then 
the performance target for hydraulic conductivity 
is also expected to be upheld given the expected 
evolution of groundwater salinity at repository 
depth and assuming no physical changes of the 
buffer, due, for example, to alteration or freezing 
(Posiva, 2010, p300).

3.1.2	 Analysis
Experimental data are available for water flow in 
saturated buffers at the laboratory scale (e.g. Pusch 
et al., 1987). There are no relevant data from in situ 
experiments or natural systems.

Hydraulic conductivities between 10-13 and 10-14 

m s-1 have been measured in saturated bentonite in 
saline conditions at dry densities above about 1200 
kg m-3 (1760 kg m-3 saturated density) by Karnland 
and co-workers (Figure 4 – Na-bentonite and Figure 
5 – Ca-bentonite). A hydraulic conductivity of 10-12 
m s-1 is about two orders of magnitude lower than 
that theoretically required for mass transport being 
dominated by diffusion (SKB, 2010). SKB consider 
that the hydraulic conductivity is primarily depend-
ent on the geometry and composition of the buffer, 
the density, the ion concentration in the pore water 
and the temperature (SKB, 2010). Regarding the 
latter, higher temperatures decrease the viscosity of 

Figure 4. Hydraulic conductivity of MX-80 (WyR1) bentonite measured at different densities 
and molar concentration of NaCl in the saturating solution (from Karnland et al., 2006).
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water thus increasing permeability, but can also af-
fect the microstructure (e.g. Villar and Lloret, 2004).

It may be seen from Figure 4 and Figure 5 that 
although the dependence of hydraulic conductivity 
upon compaction density is strong, the dependence 
of pore water salinity is weak (weaker than that for 
swelling pressure, for example). It should be noted 
however that these data concern Na-bentonite 
percolated with NaCl solutions and Ca-bentonite 
percolated with CaCl2 solutions and not vice versa. 
No data are currently available for these alternative 
systems.

These Figures show that data for Na- and 
Ca-bentonites are similar at target compaction 
densities, but it can also be seen that the gradient 
of hydraulic conductivity with density is much 
greater for Ca-bentonite than the Na form, so that 
at 1000 kg m-3 dry density, the hydraulic conductiv-
ity of Ca-bentonite is about an order of magnitude 
greater than that for Na-bentonite. Consequently, 
the hydraulic conductivity of Ca-bentonite will be 
more susceptible to changes in density, say through 
erosion, than the Na-form.

Pusch attributes this difference in permeability 
behaviour to the microstructure of the clay, with 
the Ca-form tending to aggregate in larger ‘stacks’ 
of clay lamellae than the Na-form (Pusch, 2002). 
These larger stacks have larger voids associated 
with them. The number of lamellae in stacks in Na-
bentonite is typically 3–5, but up to 10 for the Ca 

form (Pusch, 2002). Pusch emphasises this point by 
comparing the theoretical fraction of interlamellar 
pore water in each type of clay at different satu-
rated bulk densities (Figure 6). From this Figure, 
Pusch concludes that at a given density, there is 
more ‘free’ pore water in Ca-bentonite at a given 
density than in the Na form. However, the diagram 
demonstrates that in both clay types the fraction of 
interlamellar water is large at higher densities and 
since this fraction is ‘immobile’ at normal hydraulic 
gradients, it is clear that the hydraulic conductivity 
of a dense buffer is very low, irrespective of the type 
of adsorbed cation. Pusch goes on to state that for 
low densities the difference between the two forms 

Figure 5. Hydraulic conductivity of Deponit CaN (MiR1) bentonite measured at different densities 
and molar concentration of CaCl2 in the saturating solution (from Karnland et al., 2006).

Figure 6. Theoretical fraction of total porewater in 
montmorillonite that is in interlamellar positions. Up-
per curve represents Na clay and the lower curve Ca 
clay (from Pusch, 2002).
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becomes obvious, however, and for densities lower 
than 1600–1800 kg m-3 Ca-smectite becomes very 
conductive because of the lack of microstructural 
continuity and coherence.

Likos and Wayllace confirm Pusch’s observa-
tions by noting that water uptake, volume change, 
and swelling pressure are all more significant for 
Ca-Mg-type bentonites than a Wyoming-Na-type 
bentonite in water vapour sorption experiments 
using compacted bentonites in controlled humidity 
environments (Likos and Wayllace, 2010). ‘Plastic 
yielding’, evident as a peak in the relationship 
between swelling pressure and relative humidity 
was more evident and occurred at a lower relative 
humidity for Ca-Mg bentonite. Likos and Wayllace 
attribute this behaviour to the limited capacity for 
interlayer swelling in Ca-Mg bentonites and cor-
responding structural collapse induced by the onset 
of water uptake in larger intra-aggregate and inter-
aggregate pores. They also note that the number of 
mineral layers making up quasi-crystals within the 
clay aggregates is larger for divalent cation systems, 
with as many as 400 face-to-face oriented layers for 
Ca-smectite and perhaps 20 layers for Na-smectite 
at 1000 bar.

Regarding water content Muurinen has noted 
that in Deponit CaN, the interlamellar space 
contributes more to the chloride porosity than in 
sodium bentonite (Muurinen, 2009). Owing to the 
thinner double layers in the divalent bentonite 
there is probably very little exclusion in the so-
called ‘soft fraction’ of the bentonite. In the Deponit 
CaN samples the water amount in the soft fraction 
of the clay decreases more quickly with the increas-
ing density than in the MX-80 samples, which sup-
ports the greater increase of hydraulic conductivity 
with decreasing compaction density.

3.2	 Backfill
3.2.1	 Safety Targets and Functions
According to Posiva (Posiva, 2010, p301), “the back-
fill shall limit the advective mass transport along 
the deposition tunnel (advective migration)” thereby:
•	 restricting the flow of groundwater in the tunnel; 

and
•	 limiting the transport of harmful substances in 

the tunnel.

Posiva concludes that the tunnel backfill should “be 
impermeable enough so that water flow is negligible 
and the deposition tunnels do not significantly alter 
the bedrock hydrology (over the longterm)” (Posiva, 
2010, p293). The accompanying performance target 
for the hydraulic conductivity of the backfill is 
< 10-10 m s-1. Since hydraulic conductivity (along 
with swelling pressure and compressibility) are 
all strong functions of dry density, requirements of 
1740, 1510, and 1240 kg m-3 have been defined for 
a 40/60 clay/ballast mix, Friedland Clay, and Milos 
B bentonite, respectively (Hansen et al., 2009). 
Hansen et al. go onto note that the greatest safety 
margin regarding dry density has been achieved 
with Milos B bentonite, and the lowest with the 
40/60 mixture.

3.2.2	 Analysis
The safety target of < 10-10 m s-1 for the hydraulic 
conductivity of the backfill is less challenging than 
that for the buffer. Indeed, for compacted blocks of 
clay, Pusch et al. (1987) have shown that this value 
could be achieved with as little as 10% swelling clay 
in the compacted blocks at a saturated density of 
2000 kg m-3.

The hydraulic conductivities of the various 
backfill components are shown in Figure 7. It may 
be seen from this Figure that to achieve the target 
hydraulic conductivity of 10-10 m s-1, compaction 
densities of at least 1800 (60/40 ballast/clay mix), 
1450 (50/50 ballast/clay mix), 1500 (Friedland 
Clay), and 1100 (Milos B clay) kg m-3, respectively, 
are required. These are similar, but not identical, 
to values suggested by SKB (Johannesson and 
Nilsson, 2006). Consequently, greatest demands 
are placed upon the ballast/clay mixes in terms of 
required compaction densities to achieve the target 
hydraulic conductivities.

In terms of field tests, only a mix of 30% MX-80 
and 70% crushed rock has been evaluated, in the 
Prototype Repository and Backfill and Plug tests at 
Äspö (Johannesson and Nilsson, 2006) (Figure 8). 
This shows that a dry density of at least 1750 kg m-3 
is required to reach the target hydraulic conductiv-
ity of 10-10 m s-1. This backfill type has since been 
discarded by SKB and Posiva.
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Hydraulic conductivity data determined by SKB 
for a variety of pure clays are shown in Figure 9 and 
those for clay-ballast mixtures in Figure 10. Again, 
both these Figures show a wide range of required 

dry density, according to clay type and proportion of 
clay in clay/ballast mixtures. For example, Figure 
9 shows a dry density, from as little as 1100 kg m-3 
for Milos bentonite, to as much as 1500 kg m-3 for 
Friedland Clay.
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Figure 8. Hydraulic conductivity for a 30/70 mixture (30% MX-80 and 70% crushed rock) 
backfill type plotted as function of the dry density from the Backfill and Plug (BaPt) and 
Prototype Repository (‘Prototype’) tests at Äspö (from Johannesson and Nilsson, 2006).

Figure 7. Hydraulic conductivity of the candidate backfill materials (bentonite- ballast mixtures 
40/60 and 50/50, Friedland clay (F-clay) and Milos bentonite (Milos B)). From Hansen et al. (2009).
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Figure 9. The hydraulic conductivity of natural clays plotted as function of the dry density 
(from Johannesson and Nilsson, 2006).
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Figure 10. Hydraulic conductivity of clay-ballast mixtures evaluated from the oedometer tests together 
with tests results from other determinations of hydraulic conductivity plotted as a function of the dry 
density of the samples (from Johannesson and Nilsson, 2006).

However, because of the sensitivity of hydraulic 
conductivity to achieved compaction density (Figure 
9 and Figure 10), and because of the difficulties 
of backfill emplacement (e.g. potential for: non-
homogeneous installation; application of bentonite 

pellets to void spaces; piping problems, etc – Ben-
nett, 2010), a bentonite with a lower dependence 
of hydraulic conductivity upon density, such as a 
Na-bentonite, could be preferred for this function.
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3.2.3	 Summary
There are a number of datasets describing the 
hydraulic behaviour of Na-bentonites, but relatively 
few for Ca-bentonites and Deponit CaN in par-
ticular. Indeed, in the SR-Site ‘Buffer, Backfill and 
Closure Process Report’, SKB comments that “few 
tests have been performed on Deponit CaN bentonite, 
but the results available indicate that the properties 
of this material are very similar to the properties 
of MX-80 at the densities considered for the buffer 
material” (SKB, 2010, p66).

Moreover, from the data available, there are 
fundamental differences in the pore structure of 
Ca- and Na-bentonites. This latter behaviour in 
itself need not necessarily preclude the interchange-
ability of bentonite types, but it is clear that there 
are distinctly different material properties resulting 
from the differences in the exchangeable cation 
type.

Although additional tests on Deponit CaN are 
therefore recommended, the differences in material 
properties between the two bentonites would still 
remain.
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4	 Mechanical and 
rheological properties

4.1	 Buffer

4.1.1	 Safety functions
Mechanical interactions between the buffer and the 
canister arise from the buffer through the clay ma-
trix. Both compressive stresses and shear stresses 
are generated in the clay (SKB, 2010). According to 
TKS-2009 (Posiva, 2010, p292), the buffer should be:
•	 plastic enough to mitigate the effects of small 

rock movements on the canisters, and
•	 stiff enough to support the weight of the can-

isters and keep the canister in position in the 
deposition hole.

For SKB, the safety functions relating to the me-
chanical and rheological properties of the buffer 
are those concerning the ‘damping of rock shear’ 
(‘Buff3’) and ‘prevent canister sinking’ (‘Buff5’) 
(SKB, 2011, Volume I, Figure 8-2). The safety 
criterion for the former is that the buffer saturated 
density should be less than 2050 kg m-3, whereas for 
the latter, it is defined by swelling pressure being 
greater than 0.2 MPa. The main determinant of 
the creep rate and resulting canister sinking is the 
magnitude of the mobilised shear strength (shear 
stress divided by shear strength), which results in 
increased sinking. The shear strength decreases 
with decreasing swelling pressure. These effects are 
relevant to the ‘shear load scenario’ during glacial 
loading and post-glacial earthquakes (e.g. SKB, 
2011, Vol III, p617). The design premises require 
that the canister should remain intact after a 5 cm 
rock shear movement at a rate of 1 m s-1 for buffer 
material properties of a 2050 kg m-3 Ca-bentonite 
(SKB, 2011, Vol II, p481). Canister sinking is treated 
as a special case of the buffer advection scenario so 
that for a deposition hole that has experienced loss 
of buffer mass due to erosion/colloid release such 
that advective conditions prevail, this safety func-
tion cannot be guaranteed. However, if advective 

conditions do exist, the fact that the canister sinks 
is of secondary importance (SKB, 2011, Vol II, p542).

4.1.2	 Analysis
Ca-bentonite has been selected for stress-strain 
calculations by SKB as a conservative choice be-
cause of its greater density, swelling pressure and 
deviatoric strength under design conditions (SKB, 
2011, with the material model reported in Börges-
son et al., 2010, and shear calculations reported by 
Börgesson and Hernelind, 2010). New experimental 
data have been reported by Dueck et al. (2010), 
which update those utilised in the SR-Can assess-
ment (Börgesson and Hernelind, 2006).

These data show that Deponit CaN has greater 
deviatoric stress values (generally 1MPa greater) 
at a given void ratio than those for the Na-form of 
MX-80. Unusually, the Ca-exchanged form of MX-80 
(orange dots) behaves more closely to MX-80 (blue 
and green dots) than Deponit CaN (red dots) (Figure 
11).

Regarding the possibility of using natural sys-
tems data, SKB reports (SKB, 2010, p190):

“No natural analogues concerning mechanical 
behaviour have been studied. Manmade bentonite 
seals are made in completely different ways (mix-
tures with low density) and natural bentonites have 
unknown histories. The existence of relevant natural 
analogues is probably very limited and difficult to 
evaluate”.

Pusch gives a generalised expression of the 
shear strength q as a function of the mean effective 
stress p (Pusch, 2002):

q = apb

where a = q for p = 1 kPa, and b is the slope of log 
p/log q diagrams. Pusch notes that the strength 
parameter, a of Ca-bentonite is twice that of the 
sodium form and is increased by the presence of 
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saline groundwater (Table 8). Note that Börgesson 
et al. consider that Moosburg bentonite shows 
(unexplained) larger deviator stress values at 
failure than Deponit-CaN under similar conditions 
(Börgesson et al., 2010 – data not shown here) 
and they consider that Moosburg bentonite differs 
substantially from what may be expected from ion-
exchanged MX-80 and/or Deponit CaN.

4.2	 Backfill
According to TKS-2009 (Posiva, 2010, p301), the 
mechanical properties of the backfill should:
•	 Keep the buffer in place by restricting expansion 

into the deposition tunnel. The compressibility 
of the backfill material depends on the composi-
tion, saturation rate and density of the backfill 
material components and the amount of void in 
the structure.

•	 Protect the rock from surrounding mechanical 
disturbance by maintaining a certain swelling 
pressure to support the strength of the tun-
nel walls. The swelling pressure generated by 
the backfill material depends on the amount, 
density and saturation rate of the expanding 
materials. These mechanical properties need to 
be maintained even as a result of, for example, 
mineralogical change.

According to TKS 2009, surveys of the interaction 
between the filling structure and the buffer and the 
optimisation of the backfill in terms of composition, 
production and placement will continue during the 
next TKS period (Posiva, 2010, p271).

Hansen et al. (2009) also state that the com-
pression of the backfill caused by the swelling of 
the buffer should not be large enough to allow the 
saturated density of the buffer to decrease below 
1950 kg m-3. Also, they state that the compressibility 
of the backfill depends not only on the compression 
properties of the backfill materials but also on the 
backfill geometry and free void space in the tunnel, 
i.e. the compressibility needs to be studied as a 
function of the backfill structure. In addition, the 
compressibility is different at different saturation 
states of the backfill.

Figure 11. Results from unconfined compression tests (UC) and triaxial tests (T) on MX-80 (blue), MX-80Na 
(green), MX-80Ca (orange) and Deponit CaN (red). From Dueck et al. (2010).

Table 8. Strength parameter a of bentonites interpreted 
from triaxial tests (from Pusch, 2002).

Bentonite a (dimensionless) Pore water

MX-80 (Na) 2.8 Pure water

IBECO (Na) 2.9 Pure water

MX-80 (Na) 3.5 3.5 % NaCl

Moosburg (Ca) 5.5 Pure water
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The compressibility and deformation behaviour 
of the backfill materials are described in detail in 
Johannesson and Nilsson (2006, p. 28), Johannesson 
(2008, p. 19–20) and in Kuula-Väisänen et al. (2008, 
Chapter 4). Modelling has been carried out with 
analytical calculations (Johannesson and Nilsson, 
2006; Johannesson, 2008) and numerical modelling 
(Korkiala-Tanttu, 2008).

The densities required for various backfilling 
materials to maintain the target saturated density 
of the buffer (1950 kg m-3) are shown in Table 9 
(from Johannesson and Nilsson, 2006), along with 
other key properties, hydraulic conductivity and 
swelling pressure. From this Table, it may be 
seen that the requirements for the mechanical 
properties are the most demanding and in terms 
of material, the clay/ballast mixtures require the 
highest density. The reference material, Friedland 
Clay lies between the bentonite clays (Asha, Milos 
bf and DPJ) and the clay/ballast mixtures in terms 
of necessary density.

The backfill materials must also have a sufficient 
self-sealing ability (sealing of the piping channels 

within the backfill due to swelling of the backfill 
materials) after saturation (Hansen et al., 2009). 
Keto et al. (2009) have shown that the self-sealing 
ability of Friedland is sufficient when the degree of 
block filling is >70%.

4.3	 Summary
Posiva and SKB have conservatively chosen Ca-
bentonite (Deponit CaN) for calculations of me-
chanical behaviour, because of its higher strength, 
swelling pressure and density, in the belief that if 
this bentonite type meets safety requirements, then 
other (e.g. Na-dominated) bentonite types will also 
be adequate.

Consideration of the mechanical properties of 
tunnel backfill is complicated by the lack of a final 
specification for this material. From tests carried 
out this far, it is clear that clay-ballast mixtures 
have the greatest demands in terms of required 
density. Of the pure clays, Friedland Clay performs 
the least satisfactorily, but is the current reference 
clay for the compacted blocks in the backfill design.

Table 9. Dry densities (kg m-3) for different backfill materials required to fulfil target properties of the buffer 
(from Johannesson and Nilsson, 2006).

Material
Hydraulic Conductivity

(< 10-10 m s-1)
Swelling Pressure

(> 200 kPa)
Deformation properties 

(buffer saturated density ≥ 1950 kg m-3)

Asha 230 (Indian bentonite) 1120 1050 1160

Milos bf 1090 1060 1240

DPJ (Czech bentonite) 1220 1240 1400

Friedland Clay 1400 1350 1510

30/70 mixture 1700–1800 1730–1800 1690

50/50 mixture 1280 1450 1560
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5	 Long-term alteration

Alteration of clay in the buffer and backfill are 
similar processes and are here considered together 
rather than as separate sections. Differences in 
treatment are highlighted as necessary.

5.1	 Safety targets and functions
TKS-2009 states that: “the buffer temperature 
shall remain sufficiently low, in order to prevent 
thermallyinduced mineral transformation” (Posiva, 
2010, p298). This is particularly relevant during 
the early evolution of the repository when there is 
significant heat generation by the spent fuel. This 
requirement is necessary for the buffer to fulfil its 
other safety functions. For both Posiva and SKB, 
this performance target is < 100°C. For SKB, this 
issue is evaluated through the ‘Buff4’ safety func-
tion, ‘resist transformation’ (SKB, 2011, Vol I, Figure 
8-2). This criterion is principally based upon the 
temperature-dependent rate of transformation of 
montmorillonite to non-swelling illite. The evidence 
for this transformation has been evaluated in detail 
(e.g. SKB, 2010; Karnland and Birgersson, 2006).

Although illitisation has been the focus of most 
clay mineral alteration studies and concerns, other 
mineral transformations may be equally or more 
important resulting from:
•	 interaction with groundwaters which could 

include beidellitisation or saponitisation in ad-
dition to illitisation;

•	 interaction with cement grouts and concretes;
•	 interaction with iron/steel canister/insert mate-

rials.

5.2	 Thermodynamic stability
The thermodynamic stability of smectites, and 
clays in general, have been debated for a number 
of decades, so that a comprehensive discussion of 
this issue is outside the scope of this document. 
Nevertheless, this debate has centred principally 

on the status of clays as a thermodynamic phase. 
Some authors consider that because of the het-
erogeneity of composition of clay minerals, and 
smectites in particular, they cannot be considered 
as single phases in a thermodynamic sense (e.g. 
Lippmann, 1981; May et al., 1986). However, some 
of the problems arising from this heterogeneity 
can be avoided if clay minerals are considered as 
solid-solutions (e.g. Aagaard and Helgeson, 1983; 
Fritz, 1985; Ransom and Helgeson, 1994; Ransom 
and Helgeson, 1995; Arthur and Wang, 2000; Vidal 
and Dubacq, 2009). The preservation of clays over 
multi-million year timescales is an indication of 
their long-term stability, but some authors would 
view clays as ‘metastable micas’, so in other words, 
any transformation of clays to more thermodynami-
cally stable solids such as micas may be very slow.

An analysis of the stability of montmorillon-
ite in deep groundwaters at Forsmark, Sweden 
has suggested control of major cations through 
montmorillonite-saponite coexistence (e.g. Figure 
12). Stability fields for Na- and Ca-montmorillonite 
in Figure 12 are small in comparison with saponitic 
clays, suggesting that the latter may be more stable 
under Forsmark conditions.

5.3	 Cation exchange
In smectite clays such as montmorillonite, clay 
layers bear a permanent negative charge compen-
sated by counterions located between them (inter-
layer space). These counterions are the origin of 
two features of clay behaviour: swelling; and cation 
exchange. The former refers to the entrance of water 
into the clay, while the latter involves the replace-
ment of natural counterions like Na+ by other ions 
initially in the aqueous solution in contact with the 
mineral, and the concomitant release of Na+ to the 
solution. Studies have shown that, under a given 
set of conditions, various cations are not equally 
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replaceable and do not have the same replacing 
power. In principle, the following law of replacement 
applies (e.g. Pusch, 2002):

Li < Na < K < Ca < Mg < NH4

This implies preferential replacement of e.g. Na+ by 
Ca2+ rather than vice versa. According to the current 
paradigm for ionic exchange in clays, specific inter-
actions between the ions and the clay surface, or the 
hydration properties of ions in the clay interlayer, 
are the driving force for ion exchange (Rotenberg 
et al., 2009). The origin of clay selectivity has been 
explained by a number of arguments (Rotenberg et 
al., 2009):
•	 the size of hydrated cations, compared to the 

interlayer spacing;
•	 the ability to lose a water molecule at the clay 

surface, thus forming a stronger inner-sphere 
complex;

•	 the hydration state in the interlayer; or
•	 the polarisability that influences the formation 

of surface complexes.

These microscopic features are then thought to 
weigh in favour of the interactions of clay interlay-
ers with larger cations. However, considering only 
the properties of the clay phase to infer properties 
of cation exchange can lead to erroneous conclusions 
since it is the hydration free energy difference, i.e. 
the contribution of the water phase, that leads to an 
overall exchange of small ions for larger ones (e.g. 
Na+ for Cs+) (Rotenberg et al., 2009).

Moreover, the replacement of Ca2+ and Mg2+ 
by Na+ in montmorillonite increases as the con-
centration of Na+ in the solution increases (cation 
exchange is a stoichiometric reaction and the law 
of mass action holds, implying that an increased 
concentration of the replacing cation causes greater 
exchange). Selectivity varies with electrolyte con-
centration, so that the more dilute the solution, the 
greater the selectivity.

The effects of concentration depend on the kind 
of cation that is being replaced and also on the 
valence of the cation. The complexity of cation ex-
change processes is indicated by the fact that with 
cations of about similar replacing power and the 
same valence, dilution has a relatively small effect 
on the exchange, while with cations of different re-
placing power and different valence (e.g. Na+ versus 
Ca2+), dilution produces significant differences in 
exchange.

Compaction may also affect cation exchange by 
reducing the activity of water and thereby reducing 
the hydration of aqueous species (e.g. Wang et al., 
2003). Cations with a low hydration tendency, such 
as Cs, therefore accumulate in the interlayer space, 
whereas highly hydrated cations such as sodium 
tend to accumulate in the bulk water where water 
is easily available for hydration (Van Loon and 
Glaus, 2008).

Laine and Karttunen (2010) report that Olki-
luoto groundwater at repository depth may be 
either saline Na-Ca-Cl type or highly saline Ca-
Na-Cl type and that the interface between these 
two groundwater types is very close to repository 
level. Groundwater salinity and Ca/Na increase 
with depth. According to Laine and Karttunen, 
these compositions favour exchange towards a 
Ca-dominant composition. This is confirmed by ex-
periments which showed cation exchange towards a 
Ca-dominant composition when bentonite interacts 
with Olkiluoto saline groundwater (Muurinen and 
Lehikoinen, 1999). Consequently, reaction of Na-

Figure 12. Mineral stabilities in the system Na2O-CaO-
MgO-Al2O3-SiO2-H2O-CO2 at 10°C. Al3+, SiO2(aq) and 
Ca2+ activities were fixed by kaolinite, chalcedony and 
calcite respectively at a log fCO2(g) = -2.8 bars. Blue 
dots represent compositions of groundwaters from 
repository depth at Forsmark (A.H. Bath, pers. comm.). 
This suggests control of Na/Ca ratios in groundwater 
by montmorillonite-saponite coexistence. Note the 
narrow stability fields for montmorillonite in compari-
son with saponite. From Savage (2011).
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bentonite with Olkiluoto-type groundwater would 
lead to a progressive replacement of Na by Ca2+ 
(e.g. note the similarity of exchange composition in 
Figure 13 and Figure 14.

5.4	 Interaction with Groundwater
Interaction of clay with groundwater could lead to 
beidellitisation or saponitisation reactions inter 
alia, as well illitisation. For example, the potential 
saponitisation of montmorillonite in bentonite by 
groundwaters at Forsmark, Sweden has been dis-
cussed recently (Savage, 2011), but the greatest at-
tention has been placed upon illlitisation reactions.

Illitisation of montmorillonite with respect to 
KBS-3 conditions has been discussed in detail by 
Karnland and Birgersson (2006) and Laine and 

Karttunen (2010). In general terms, the reaction 
can be written as:

K+/Ca2+/Na+-smectite + K+ + (Al3+) -> illite + silica 
+ Ca2+/Na+

So for the reaction to occur, an increase in clay layer 
charge and an introduction of potassium ions are 
required. The activity and the precipitation rate 
of silica in and from the aqueous phase can also 
affect illitisation. The precise mechanism and rate 
of reaction are still under debate despite more than 
four decades of research (mainly allied to hydro-
carbon exploration) (e.g. Meunier and Velde, 2004). 
Nevertheless, using available rates of reaction 
(principally those of Huang et al., 1993 and Pytte 

Figure 13. Predicted evolution of Ca occupancy in the exchanger of MX-80 bentonite during interaction 
with groundwater at the Forsmark site, Sweden (from Arcos et al., 2006).
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and Reynolds, 1989), the calculated conversion of 
smectite to illite under relevant chemical conditions 
and at temperatures less than 100°C is likely to be 
minor (Karnland and Birgersson, 2006). Karnland 
and Birgersson note however than neither of these 
models addresses factors such as the availability of 
aluminium, the water/clay ratio, or silica activity.

The reactivity of different types of montmoril-
lonite clays is not really addressed by Karnland and 
Birgersson (2006) or Laine and Karttunen (2010). 
However, Grauer (1986, 1990) observed that Ca-
montmorillonite is less prone to illitisation that the 
sodium form, citing evidence from both experimen-
tal (e.g. Eberl, 1978; Roberson and Lahann, 1981; 
Yau et al., 1987; Inoue, 1983) and natural system 
studies (e.g. Nadeau and Reynolds, 1981). Other 

authors also report smectite compositional effects 
on the rate of illitisation (e.g. Niu and Ishida, 2000).

Despite this evidence, the precise effects of smec-
tite composition upon the mechanism of illitisation 
are not clear.

5.5	 Interaction with cement/concrete
Cement and other construction materials will be 
used in the construction of a spent fuel disposal 
facility (KBS-3V or KBS-3H). Posiva state that 
the purposes of such materials are to limit the 
groundwater inflow (grouting), to stabilise the rock 
(shotcrete, castings of rock bolts), to construct plugs 
and seals (e.g. drift end plugs, compartment plugs), 
to fill, for example, anchoring holes and for opera-
tional safety purposes (floors, supporting walls etc) 

Figure 14. Predicted evolution of Ca occupancy in the exchanger of Deponit CaN during interaction with 
groundwater at the Forsmark site, Sweden (from Arcos et al., 2006).
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(Gribi et al., 2008, Appendix F). Concrete will also 
be used for temporary construction elements (walls, 
intermediate floors, doors). Most of the cementitious 
materials will be removed before the final closure 
of the repository but, according to the estimates 
of residual materials in the KBS-3H repository, 
between 1.2 and 1.8 million kg of cement will be 
left in the entire repository. Of these, an average of 
2 600 to 3 900 kg of cement will be located in each 
drift (Hagros, 2007).

Posiva considers that the highly reactive high-
pH fluids from cementitious materials could in 
principle constitute a threat to the long-term stabil-
ity of the buffer and other bentonite components 
(Gribi et al., 2008, p140): “the reaction of the cement-
conditioned alkaline water with the buffer will 
result in mineral dissolution and formation of new 
phases. Consequently, it is likely that the hydraulic 
and chemical properties of both the cementitious ma-
terials themselves and any bentonite that comes into 
contact with high-pH fluids will change”. Posiva’s 
main concerns are:
•	montmorillonite dissolution leading to change 

in swelling pressure, porosity, and hydraulic 
conductivity;

•	 bentonite cementation by secondary phases lead-
ing to fracturing, with the possibility of advective 
transport, and;

•	 formation of alteration products, and their con-
sequences for the properties of altered clay.

A detailed review of likely processes and issues 
regarding the presence of cementitious materials is 
contained in Appendix F of the Process report of the 
recent KBS-3H study (Gribi et al., 2008). Despite no 
cement-bearing component being in direct contact 
with the bentonite in the supercontainer and dis-
tance block unit in the KBS-3H design, potential 
effects on the buffer arising through indirect contact 
of alkaline cementitious pore water transported 
from a grouted fracture by groundwater to the 
supercontainer area through the fractured rock 
network have been evaluated by Posiva (from a 
mass balance perspective). From these calculations, 

Posiva show that an outer zone of buffer of 4 cm 
thickness could be altered over a period of 100 000 
years (Gribi et al., 2008).

Cement-clay interactions have been studied 
extensively worldwide in the last ten years, through 
laboratory experiments (e.g. Madsen, 1998; Ichige 
et al., 1998; Kubo et al., 1998; Vigil de la Villa et al., 
2001; Fujiwara et al., 2002; Ramírez et al., 2002; 
Nakayama et al., 2004; Yamaguchi et al., 2007), 
computer simulations (e.g. De Windt et al., 2001; 
Savage et al., 2002; Gaucher et al., 2004; Watson et 
al., 2007; Marty et al., 2009; Watson et al., 2009), 
and a few analogue investigations (e.g. Tinseau et 
al., 2006; Arcilla et al., 2009; Honrado et al., 2009; 
Savage et al., 2010a).

Surprisingly, there are very few laboratory 
experimental studies relating to MX-80 or Deponit 
CaN bentonite (Savage, 2009). Experiments con-
ducted with these latter bentonites have tended to 
focus on swelling pressure effects (e.g. Karnland, 
1997b; Karnland et al., 2007), but not on mineral-
ogical alteration. Therefore there is a gap in data 
for both MX-80 and Deponit CaN with regard to 
mineralogical processes at the cement-bentonite in-
terface. Reaction of cement/cement pore fluids with 
FEBEX bentonite is characterised by pore blocking 
with Mg-bearing solids such as brucite, sepiolite 
and Mg-clays (e.g. Cuevas et al., 2006).

In addition most, if not all, of these studies, have 
considered the interaction of OPC-type cement with 
bentonite, and not other formulations. Currently, 
there are only modelling studies available which 
address the interaction of low pH cements with ben-
tonite (e.g. Watson et al., 2007; Lehikoinen, 2009).

There is evidence for reactivity of montmoril-
lonite in the pH range 9–10 at the Searles Lake 
analogue in California, USA (Savage et al., 2010a). 
Appreciable dissolution of montmorillonite is in-
ferred to have occurred, with the precipitation of 
illite, K-feldspar and analcime. These observations 
are in contrast with the results of the modelling 
studies described above, probably due to advection 
being the primary mode of fluid transport in the 
Searles Lake diagenetic system.
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5.6	 Interaction with iron/steel
Interaction of bentonite with iron/steel is especially 
relevant to the KBS-3H concept where currently, 
the supercontainer is envisaged to be made of 
steel. Any interaction of steel with bentonite, could 
potentially include:
•	 saturation of clay cation exchange/sorption sites 

with Fe2+;
•	mineral transformation of smectite to non-

swelling sheet silicates such as berthierine;
•	 perturbation of buffer physical properties such 

as decreased swelling and/or increased hydraulic 
conductivity.

Laboratory experimental studies of the corrosion of 
iron in clay show that corrosion product layers are 
generally thin (< 1 µm) with magnetite, siderite, or 
‘green rust’ occurring depending upon temperature 
and ambient PCO2 (Johnston et al., 1985; Allen 
and Wood, 1988; Hermansson, 2004; Carlson et al., 
2007). However, the results of experiments to char-
acterise the mineralogical products of iron-bentonite 
interaction are not unequivocal because the inevi-
table short-term nature of laboratory experimental 
studies introduces issues of metastability and kinet-
ics. Factors influencing bentonite alteration include: 
reaction time, temperature, water/clay ratio, and 
clay and pore fluid compositions. For example, high 
temperature experiments (> 250°C) are dominated 
by iron chlorite (Cathelineau et al., 2005), whereas 
lower temperatures produce berthierine, odinite, 
cronstedtite, or Fe-rich smectite (e.g. Lantenois et 
al., 2005; Wilson et al., 2006), depending upon initial 
clay composition and water/clay ratio.

This ambiguity of experimental data has been 
interpreted as evidence for the relevance of Ostwald 
step processes in bentonite alteration (Savage et al., 
2010b). The models by Savage et al. demonstrate 
in particular, the potential influence of mineral 
growth kinetics and the treatment of surface areas 
for mineral nucleation and growth. This contrasts 
with modelling studies of iron-bentonite interac-
tions which have emphasised equilibrium (infinite 
rate) mineral growth (e.g. Montes-H et al., 2005). 
Some studies have attempted to consider mineral 
growth kinetics (e.g. Bildstein et al., 2006; Marty et 
al., 2010), but little work has been undertaken on 
the effects of using different kinetic data/rate laws.

Overviews of iron-bentonite interactions are 
described in the recent KBS-3H assessment Process 

(Gribi et al., 2008) and Summary (Smith et al., 
2008) reports, and in more detail in a number of 
underlying reports:
•	 a literature review (Marcos, 2003);
•	 a summary of the status of international re-

search (Wersin and Snellman, 2008);
•	 as applied to the Olkiluoto Site (Wersin et al., 

2008),
•	 as linked to gas behaviour (Johnson et al., 2008), 

and
•	 in evidence from steel corrosion experiments 

in compacted bentonite (Carlson et al., 2008; 
Milodowski et al., 2007, 2009).

In conclusion, Posiva believe that considerable 
uncertainties exist regarding iron-bentonite inter-
actions (Gribi et al., 2008, p140) so that:
•	 further experimental work should include meas-

urements of swelling pressure and hydraulic 
properties, including gas transport properties of 
altered bentonite.

•	 The potential effect of H2 on Fe-clay interactions 
and on reduction of structural iron in smectite 
should be experimentally investigated.

•	 From a modelling perspective, it would be useful 
to include reaction kinetics for smectite trans-
formation in the KBS-3H conceptual model to 
obtain a more realistic description of the evolu-
tion of the iron front.

Currently, all the experimental data in the litera-
ture refer to either Na-bentonites such as MX-80 
or Kunipia-F, or natural clays, such as the Callovo-
Oxfordian mudstone from Bure, France. Some 
experimental studies have been conducted with the 
French ‘FoCa’ clay (Perronnet et al., 2007), but this 
clay is not directly analogous to the Ca-bentonites 
under consideration by Posiva and SKB. According 
to the SR-Site Buffer Process Report (SKB, 2010, 
p151), iron-bentonite interactions are being studied 
in the Alternative Buffer Materials (ABM) project 
at the Äspö HRL. Eleven different compacted clays 
have been placed in contact with an iron heater at 
130°C in three different packages (Eng et al., 2007). 
Experimental durations are from two to more than 
five years. It is not clear whether other experimen-
tal studies between Ca-bentonite and steel canister 
materials are being carried out, but Posiva may 
turn to the use of a titanium supercontainer to 
avoid this issue altogether (Posiva, 2010, p479).
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5.7	 Summary
Long-term interaction of bentonite with groundwa-
ter is likely to lead to dominance of calcium on the 
cation exchange site in montmorillonite, regardless 
of the initial composition of the bentonite.

There is a substantial body of experimental and 
natural systems evidence to suggest that illitisa-
tion is inhibited by divalent interlayer cations in 
montmorillonite. Ca-bentonite is thus likely to be 
more resistant to illitisation in the long-term than 
the Na-form.

There are no mineralogical experimental data 
currently available for the interaction of Ca-
bentonites with either OPC or low-pH cement pore 
fluids. There are some data available for the effects 
of cement pore fluids on the swelling of Ca-bentonite 

and some mineralogical data for the interaction 
of cement pore fluids with FEBEX bentonite, but 
this is dominated by Mg interlayer cations. Conse-
quently, no judgement can be made regarding the 
relative reactivities of Na- and Ca-bentonites with 
cement pore fluids.

A similar story exists for the interaction of ben-
tonite with iron or steel canister materials. There 
are no experimental data currently available for 
Ca-bentonite. This issue is being addressed in the 
ABM test at Äspö where initial data will become 
available in 2012. Consequently, no judgement 
can be made regarding the relative reactivities of 
Na- and Ca-bentonites with iron or steel canister 
materials.
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6	 Colloidal properties

6.1	 Safety functions
The colloidal properties of bentonites are important 
mainly because the buffer may become susceptible 
to significant mass losses by erosion should the 
constituent clay minerals be suspended as colloids 
that are then transported away from deposition 
holes in flowing groundwater. This type of erosion 
could occur in repository scenarios involving the 
transient migration of very dilute solutions, such 
as glacial meltwaters, to repository depths because 
stable suspensions of clay colloids tend to form in 
aqueous solutions that are relatively dilute. Erosion 
could adversely impact safety functions of the buffer 
because the corresponding performance targets 
generally depend, either directly or indirectly, on 
the buffer’s density. Buffer erosion was determined 
to be a key contributor to risk in the SR-Can safety 
assessment (SKB, 2006).

6.2	 Analysis
SKB recently carried out a detailed evaluation of 
buffer erosion (Neretnieks et al., 2009; Birgersson 
et al., 2009; Moreno et al., 2011). Apted et al. (2010) 
considered related concepts and potential safety 
consequences from a regulatory perspective.

The basic conceptual model considered in these 
studies is illustrated in Figure 15, which shows a 
vertical cross section through a portion of a KBS-3V 
deposition hole that is intersected by a horizontal 
fracture. Free swelling of bentonite from the deposi-
tion hole outward into the fracture is resisted by 
friction forces acting within the bentonite and at 
the rock interface. Bentonite density and swelling 
pressure decrease rapidly with increasing distance 
in the fracture, and rheological properties change 
accordingly from those of a solid → gel → fluid 
(which may also include a semi-fluid phase). Fluid 
properties are identical to those of groundwater 
at the penetration front. Clay colloids form near 
this front, and are lost by diffusion into the flowing 
groundwater. Bentonite fluids, which are considered 
to be dispersions of bentonite colloids in water (i.e., 
not solids or gels), may also be lost by advection. 
More bentonite then extrudes into the fracture 
from the deposition hole to restore equilibrium. The 
resultant mass loss of bentonite from the deposition 
hole results in a decrease in buffer density.

Neretnieks et al. (2009) developed a model of 
buffer erosion that accounts for forces that would 
control the expansion of bentonite from a deposition 

Figure 15. Conceptual model of buffer erosion (Birgersson et al., 2009). The swelling pressure and density of 
bentonite in the fracture decreases exponentially with increasing distance, z, and, at a given distance, with 
decreasing fracture aperture, a.
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hole into a fracture (dynamic force-balance model), 
and for the effects of particle and ionic concentra-
tions on the viscosity of the expanded bentonite 
(viscosity model). The force-balance and viscosity 
models were combined into an overall model of 
buffer erosion, which accounts for both the Brown-
ian motion of individual clay colloids into the flow-
ing groundwater and for the advection of sols that 
form within the fracture as the bentonite expands 
and becomes less dense and less viscous.

The force-balance model is based on the assump-
tion that expansion of the buffer outward from a 
deposition hole into an intersecting fracture would 
be controlled by a number of forces acting on the 
individual clay particles (Neretnieks et al., 2009). 
These forces include the gravity and buoyant force, 
forces resulting from changes in the chemical poten-
tial in a concentration gradient (diffusional force), 
van der Waals attractive forces between clay parti-
cles, repulsive forces between the particles resulting 
from charges within and on the surfaces of the 
particles (diffuse double layer forces), and friction 
forces acting on the particles as they move through 
the aqueous phase as a result of imbalances among 
the other forces. Because changes in particle veloc-
ity are expected to be slow as the buffer expands, 
acceleration can be neglected and the sum of all 
these forces must then be equal to zero.

The force-balance model was used to predict 
changes in the density and volume fraction (φ) 
of clay particles in the expanded bentonite. The 
viscosity model was developed to relate changes 
in φ to corresponding changes in the viscosity of 
bentonite gels/sols (Moreno et al., 2011; Neretnieks 
et al., 2009). The model is based on the concept of 
a co-volume of a colloidal particle. The co-volume is 
defined as the volume over which a given particle 
can rotate freely without touching other particles in 
a colloidal suspension. It is determined both by the 
physical size of the particle as well as by interac-
tions involving the particle’s electrical double layer 
and those of its nearest neighbours. The co-volume 
thus depends on the physical volume fraction and 
on properties of the colloidal suspension, such as the 
ionic composition of the aqueous phase, that control 
the effective thickness of the electrical double layer.

The buffer erosion model was evaluated by for an 
idealised case of two-dimensional groundwater flow 
in a horizontal fracture intersecting a deposition 
hole (Moreno et al., 2011). The fracture aperture 

was assumed to be 1 mm. Bentonite was assumed 
to consist of pure Na-montmorillonite and the 
groundwater was represented by a dilute NaCl 
solution. The Darcy flow equation, solute diffusion 
equations, and governing equations underpinning 
the force-balance and viscosity models were evalu-
ated simultaneously using a numerical solver.

Model results are summarized in Table 10 
(Neretnieks et al., 2009). As can be seen, the erosion 
rate was predicted to increase, and the length of the 
fracture penetrated by bentonite to decrease, with 
increasing groundwater velocity. The erosion rate 
was found to be proportional to the water velocity 
(raised to the power 0.41), and also proportional to 
the fracture aperture. The erosion rate and fracture 
penetration distance for the two lowest water veloci-
ties were extrapolated from model results for the 
four higher water velocities because the numerical 
method became unstable when the velocity was 
less than about 0.95 m yr-1. Neretnieks et al. (2009) 
noted that the erosion rate for a given water veloc-
ity could be higher or lower than the values given 
in the Table because the effects of ion transport on 
the viscosity have not been adequately accounted 
for in systems containing both Na+ and Ca2+ ions. 
These authors concluded that it was not possible 
to affirm based on the present state of knowledge 
that the erosion of smectite gels cannot occur to a 
considerable extent.

The results of the buffer-erosion studies carried 
out by SKB have been used to support the SR-Site 
safety assessment (SKB, 2011). Studies are also 
planned in Posiva’s programme to experimentally 
evaluate the potential for buffer erosion as a func-
tion of groundwater and bentonite composition, and 
to evaluate filtration mechanisms that could poten-
tially minimize or prevent erosional mass losses 

Table 10. Predicted erosion rates and corresponding 
penetration distances of bentonite in fractures (Neret-
nieks et al., 2009).

Water velocity  
(m yr-1)

Erosion rate  
(g yr-1)

Penetration distance 
(m)

0.10 11 34.6

0.32 16 18.5

0.95 26 11.5

3.15 43 7.0

31.50 117 2.1

315.00 292 0.5
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of bentonite from a deposition hole (Posiva, 2010, 
p369). It should also be noted that Birgersson et al. 
(2009) developed an alternative modelling approach 
to that described above based on variations in the 
rheological properties of bentonite as a function of 
water content.

6.3	 Summary
Considering the above analysis in relation to the 
exchangeability of bentonites based on their col-
loidal properties, it can be noted that the interaction 
energy between like-charged colloidal clay particles 
becomes strongly attractive at relatively small 
inter-particle separation distances if the counte-
rions in the electrical double layer separating the 
particles are divalent and if the surface-charge den-
sity is large (Kjellander et al., 1988; Pegado et al., 
2008). This attractive force, due to so-called ion-ion 
correlations, is important for montmorillonite clays 

if exchangeable Ca/Na molar ratios are greater than 
about 90/10 (e.g., Birgersson et al., 2009). In such 
cases the attractive force is sufficiently strong that 
the minerals cannot expand to form gels or sols. On 
the other hand, montmorillonites having Ca/Na < 
90/10 can form gels or sols if counterion concentra-
tions are below a critical coagulation concentration.

These observations are relevant because they 
suggest that buffer materials composed of essen-
tially pure Ca-montmorillonites would be much 
more resistant, if not completely impervious, to the 
effects of colloid formation and chemical erosion 
than buffer materials composed of mixed Na/Ca-
montmorillonites having Ca/Na < 90/10. As noted 
in the preceding section, however, buffer materials 
with montmorillonite predominantly in the Ca form 
initially could become more sodic with time due to 
ion-exchange reactions resulting from contact of the 
buffer with repository groundwaters.
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7	 Swelling pressure

Swelling clays such as montmorillonites and other 
smectites will expand freely when contacted by wa-
ter. Should the clays be confined within an enclosed 
volume, such as a deposition hole or tunnel in a 
KBS-3 repository, the expansion will be limited and 
a pressure will develop within the clay. This pres-
sure is referred to as the swelling pressure (pswell). 
The swelling-pressure of KBS-3 buffer materials 
is considered in this section. The backfill is not 
considered in detail because important aspects of 
its design are still under investigation by Posiva.

7.1	 Safety functions
The swelling pressure is important in relation to 
repository performance because many performance 
targets for the buffer (and backfill) are defined in 
terms of this parameter (e.g., Posiva, 2010, p298). 
These targets include the prevention of significant 
microbial activity (pswell > 2 MPa); the provision of 
sufficient tightness and self-sealing ability (pswell 
> 1 MPa); and the prevention of canister sinking 
(pswell > 0.1 MPa). Also, because swelling pressure 
and hydraulic conductivity are closely related, a 
performance target to prevent significant advec-
tive transport can be stated in terms of hydraulic 
conductivity (K < 10-12 m s-1) (Posiva, 2010, p298) 
or swelling pressure (pswell > 0.1 MPa) (SKB, 2006). 
Similarly for the backfill, the performance target of 
K < 10-10 m s-1 corresponds to pswell > 0.2 MPa for an 
assumed groundwater salinity of 35 g l-1 (Pastina 
and Hellä, 2006).

7.2	 Analysis
Various types of models that have been proposed 
to account for physical, mineralogical and surface-
chemical processes controlling the swelling pressure 
of clay-based materials have been reviewed by 
Karnland (1997a), Dixon (2000), Savage (2005) and 
Agus and Schanz (2008). Empirical models relate 
pswell to the interlamellar distance between individ-

ual clay particles (Low, 1979, 1980). The models are 
relatively simple to use, but model parameters must 
be calibrated experimentally and results are not 
always easy to obtain or are physically meaningful 
(Grauer, 1986). Diffuse double-layer (DDL) models, 
which relate pswell to repulsive interactions arising 
from the overlap of electrical double layers associ-
ated with the charged surfaces of clay particles (e.g., 
Yong et al., 1992; Komine and Ogata, 1994, Komine 
and Ogata, 1996 – see also Sridaharan, 1997), are 
based on well-established theoretical concepts for 
colloidal systems (e.g., Kruyt, 1952; Adamson, 1967), 
but are difficult to apply to highly compacted clays 
due in part to structural modifications of water that 
occur in the interlamellar regions of clay particles 
(e.g., Low, 1987).

With these modelling limitations in mind, Dixon 
(2000) proposed that a database of experimental 
measurements could instead be constructed and 
used to establish empirical correlations between 
pswell and clay dry density. An example is shown in 
Figure 16, where swelling pressures determined 
in tests involving various bentonites and aqueous 
solutions are plotted as a function of the ‘effective 
clay dry density’ (ECDD = dry mass of clay divided 
by the volume occupied by the clay plus the void vol-
ume). Dixon (2000) noted that the regression lines 
shown in the figure are similar, indicating little 
influence of salt on the swelling behaviour as long 
as the ECDD is above about 0.9 Mg m-3. The limited 
number of available measurements at high salt 
concentrations generates significant uncertainty in 
the regression results, however.

A similar approach has been proposed recently 
by Karnland (2010), who noted that a plot of swell-
ing pressures for a large number of pure montmoril-
lonites, bentonites and other swelling clays reveals 
a rather wide scatter in pswell when the data are plot-
ted as a function of saturated density (Figure 17). 
Much of the scatter disappears, however, when the 



STUK-TR 12

39

Figure 16. Empirical correlations between experimental measurements of pswell and effective 
clay dry density (Dixon 2000). The lines in the figure represent the results of regression analyses 
for tests involving fresh water, brackish water, saline water and brine.

Figure 17. Plot of pswell versus saturated density for a number of bentonites and swelling clays (from Karnland, 
2010). The red bar indicates a range of buffer densities relevant for MX-80 and IBECO RWC bentonites.
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pswell data are re-plotted in terms of an alternative 
parameter defined by the montmorillonite content 
divided by the square of the water content at full 
water saturation (Figure 18). All clay minerals 
with Ca2+ as the dominant exchangeable cation lie 
near the regression line shown in Figure 18. Clay 
minerals with Na+ as the dominant cation also lie 
near this line at high values of Xmont/wm

2, but not at 
lower values (indicated in the figure by pswell values 
enclosed by the dashed line).

It is worth noting that both of the above ap-
proaches were based on the results of experiments 
in which relatively simple aqueous solutions were 
used. Dixon (Dixon, 2000) considered variations in 
environmental conditions only in terms of a range 
of groundwater salinities. Karnland (2010) based 
his approach on the results of experiments in which 
pure water, or simple NaCl or CaCl2 solutions, were 
used (Karnland et al., 2006). In studies of the effects 
of salt solutions on swelling pressure, however, Her-
bert and Moog (1999, 2000) and Herbert et al. (2004) 
have shown that other aspects of solution chemistry 
can strongly affect swelling pressure. For example, 
Herbert and Moog (2000) found that in tests involv-
ing MX-80 bentonite and saturated NaCl solutions 
pswell increased with increasing Mg content if the K 
concentration was held constant, and that K played 

the dominant role in affecting pswell in a series of 
tests in which both Mg and K varied.

An empirical modelling approach that can 
be used to relate pswell to saturated density was 
described by Hedin (2004) based on the study of 
Karnland et al. (2002). The approach consists of two 
steps. The first involves the use of an empirical ex-
pression to relate pswell to the densities of solids and 
an aqueous phase assuming the latter is initially 
pure water. The second step uses the concept of the 
Donnan equilibrium to calculate changes in pswell 
that would result if the clay were then to come into 
contact with a salt solution of some specified com-
position. Results, such as shown in Figure 19, are 
at least qualitatively consistent with experimental 
observations, which indicate that the effects of salt 
concentration on swelling pressure tend to diminish 
with increasing saturated density. This good agree-
ment is somewhat conditional, however, because 
the relation between pswell and saturated density for 
pure-water conditions is based entirely on empirical 
observations. An analysis by Arthur (2011) suggests 
that the assumption of ideal Donnan behaviour 
upon which this modelling approach is based may 
not be valid for highly compacted buffer materials.

There is some evidence to show that increasing 
temperature decreases bentonite swelling pressure 

Figure 18. Plot of swelling pressures shown in Figure 18 as a function of the montmorillonite content (Xmont) 
and water content at full water saturation (wm) (Karnland, 2010). The latter variable is defined as the mass of 
water divided by the total mass of solids.
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(e.g. Pusch, 1980; Villar and Lloret, 2004). For ex-
ample, Pusch (1980) noted increasing temperature 
to 70°C decreases the swelling pressure by approxi-
mately 30–50% of that measured at 25°C.

7.3	 Effects of freezing on 
swelling pressure

Birgersson et al. (2008, 2010) and Schatz and 
Martikainen (2010) have carried out a number of 
experimental and modelling studies of the effects 
of freezing on bentonite buffer and backfill materi-
als. The impetus for these studies comes from the 
possibility that future permafrost conditions could 
possibly extend to the depths of a KBS-3 repository 
in Finland or Sweden. The effects of freezing on the 
swelling pressure were the primary focus of these 
studies.

Birgersson et al. (2008, 2010) used a thermody-
namic approach to develop a relation between pswell 
and temperature given by:

( )
( , ) ( ,0 )

( )swell swell
clay

S w
p w T p w C T

wν
D

D = ° + D

where DT represents a difference in temperature, 
measured from 0°C, DS(w) stands for the difference 
between the molar entropy of water in bentonite 
and the molar entropy of bulk water, vclay(w) refers 
to the molar volume of water in bentonite, and w 

denotes the bentonite’s mass ratio of water to solids. 
Because there is a phase change at 0°C, DS(w) must 
have different values depending on whether DT is 
positive or negative. Above 0°C, DS(w) is uniformly 
small over a range of relevant bentonite densi-
ties, and changes in pswell are therefore also small 
under such conditions. Below 0°C, DS(w) is a large 
positive number and pswell must therefore decrease 
rapidly with decreasing temperature until a critical 
temperature, Tc, is reached at which point pswell = 
0 MPa. This is considered to be the freezing point 
of bentonite because ice cannot form until swelling 
pressure is lost (Birgersson et al., 2010). It should 
be noted however, that other authors have different 
definitions of the freezing point (e.g. Kozlowski, 
2009), such as the freezing point in the soil–water 
system being comprehended as the temperature, Tf, 
at which the equilibrium freezing of liquid soil wa-
ter (i.e. its solidification) begins. This temperature 
corresponds to the 0°C for pure free water and in 
the case of the soil–water system is lower than 0°C.

Experimental results are in reasonably good 
agreement with model predictions (e.g. Figure 20) 
(Birgersson et al., 2010; Schatz and Martikainen, 
2010). An important assumption in the model is 
that there exists only one type of pore in compacted 
bentonites.

Figure 19. Comparison of calculated and experimental pswell values as a function of bentonite density 
for various NaCl concentrations (Hedin, 2004).
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From the viewpoint of bentonite exchangeability 
it is interesting to note that for all densities inves-
tigated in the studies mentioned above, the rapid 
drop in pswell when T < 0°C depends only on the 
difference in molar entropy between bulk water and 
ice, and is therefore independent of bentonite type 
(Birgersson et al., 2010). The critical temperature 
at which bentonite freezes, however, depends on 
the swelling pressure at 0°C and is therefore a 
function of density, montmorillonite content, layer 
charge, etc. Schatz and Martikainen (2010) found no 
significant differences in the freeze-thaw behaviour 
of MX-80 and Deponit CaN bentonites.

7.4	 Summary
Experimental evidence indicates that many dif-
ferent types of bentonite can achieve swelling 
pressures that would meet performance targets for 
a KBS-3 buffer (e.g., Karnland, 1997a; Pusch, 1999; 
Karnland et al., 2006; Carlson and Keto, 2006). 

Whether the experimental conditions adequately 
represent the full range of environmental conditions 
that could exist in the near field of a repository at 
Olkiluoto is unclear, however.

Mechanistic models that could be used to help 
address this question are not presently available. 
Alternative models that attempt to account for the 
thermodynamic and microstructural properties 
of compacted clays have been developed, but they 
presently rely on empirical evidence to establish 
a relation between swelling pressure and clay 
density for a limiting case in which the saturating 
solution is pure water. Fully empirical approaches 
can accurately relate swelling pressures to various 
measures of the swelling-clay content of clay-based 
materials, but these approaches have so far been 
applied only to simplified systems in which the 
aqueous phase consists of pure water or simple 
NaCl or CaCl2 solutions.
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8	 Conclusions

As the Finnish regulator, STUK has the authority 
to independently evaluate the technical merits of 
any justifications from Posiva concerning the use, 
or ‘exchangeability’, of different bentonite types as 
buffer materials in a KBS-3 repository at Olkiluoto. 
In this section we use the preceding discussions as 
a basis for commenting on the adequacy of under-
standing that STUK should expect to see in support 
of such justifications. The backfill is not included in 
this analysis because important aspects of its basic 
design, manufacture and installation are still under 
investigation.

8.1	 Exchangeability in relation 
to buffer performance

Posiva’s views on bentonite exchangeability are 
based on performance requirements for the buffer. 
The TKS-2009 report notes, for example, that “… 
buffer components will be manufactured from the 
reference bentonite (sodium bentonite, type MX-80) 
and/or some other alternative bentonite type that 
meets the performance requirements set for buffer 
material(s)” (emphasis added) (Posiva, 2010, p. 
193). In this context, performance requirements 
presumably relate to the design basis (Juvankoski 
and Marcos, 2009) and therefore include long-term 
safety requirements, initial-state requirements and 
technical requirements (Posiva, 2010, p. 187).

As noted in the Introduction, the long-term 
safety requirements are based on two primary 
safety functions (Posiva, 2010, p. 288):
•	 to contribute to mechanical, geochemical and hy-

drogeological conditions that are predictable and 
favorable to the canister, and to protect canisters 
from external processes that could compromise 
the safety function of complete containment of 
the spent fuel and associated radionuclides, and

•	 to limit and retard radionuclide releases in the 
event of canister failure.

To achieve these functions the buffer must have 
(e.g., Posiva, 2010, p. 188):
•	 sufficiently low hydraulic conductivity to mini-

mise advective solute transport,
•	 sufficient swelling pressure to ensure tightness 

and self-sealing ability, as well as to prevent ma-
jor microbiological activity and canister sinking,

•	 sufficiently small pore structure to prevent the 
migration of radionuclides with colloids, and

•	 sufficient plasticity to protect the canister from 
the effects of minor rock-shear movements.

Also, heat released from the canister must not 
change any buffer properties to an extent that 
would adversely affect buffer performance, the 
swelling pressure within the buffer must develop 
quickly enough to prevent thermal spalling of the 
adjacent host rock, and the buffer must not endan-
ger the performance of other engineered barriers.

The initial state is the starting point for assess-
ments of long-term safety and is defined for the 
buffer by conditions prevailing in the near field 
when the buffer has been successfully installed 
around a canister. Initial-state requirements ad-
dress the gap between the buffer and canister and 
between the buffer and rock (Posiva, 2010, p. 190). 
The water content of buffer blocks, the dry density 
of the blocks and the average dry density of the 
buffer, from which the average saturated density 
can be calculated, are also initial-state require-
ments. Target values for these requirements have 
not been fully designed, but tentative values have 
been specified for the case of blocks composed of 
MX-80 bentonite produced by isostatic compression.

Technical requirements include manufactur-
ing requirements and installation requirements. 
Manufacturing requirements concern the acqui-
sition and quality assurance of raw materials, 
storage and handling of these materials, and the 
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production of buffer components, including blocks, 
rings and pellets (Ahonen et al., 2008; Juvankoski, 
2010; Laaksonen, 2010). Installation requirements 
concern the handling of buffer components, filling 
of the gap between the buffer and rock, removal of 
deposition-hole protections and filling the top of 
the deposition hole (Juvankoski and Marcos, 2009). 
Manufacturing and installation requirements are 
still under investigation (Posiva, 2010, p193).

The design basis for the buffer takes into ac-
count these long-term safety requirements, initial-
state requirements and technical requirements. The 
current design basis calls for (Posiva, 2010, p. 190; 
Juvankoski and Marcos, 2009):
•	 a montmorillonite content greater than 75 wt%,
•	 a saturated density between 1950 and 2050 kg 

m-3,
•	 sufficient ductility to protect the canister from 

shear-type dislocations in the rock of up to 100 
mm, and

•	 temperatures < 100°C.

Posiva believes this design basis will ensure that 
the buffer’s safety functions are met once a target 
state has been achieved. The target state is expected 
to evolve from the initial state through an early 
transient period during which the buffer becomes 
fully saturated with groundwater, and radiogenic 
heat from the spent fuel is largely dissipated by 
conduction into the surrounding rock (e.g., Posiva, 
2010, Section 6.1.3).

Posiva’s view that the exchangeability of differ-
ent bentonite types should be assessed in relation 
to the performance requirements discussed above 
seems reasonable. The level of understanding 
necessary to adequately support such assessments 
is not clear, however, and would seem to depend 
on the type of requirements being considered. 
Assessments of exchangeability in relation to 
initial-state or technical requirements may be 
relatively straightforward, for example, because 
they can be evaluated by direct observations and 
measurements, and because it is reasonable to ex-
pect that any alternative bentonite types would be 
subjected to the same quality-assurance standards 
and laboratory-scale and block-scale testing as the 
reference MX-80 material.

Assessments based on long-term safety require-
ments may be more problematic, however. These re-
quirements relate to a target state of the buffer that 

will be attained only after hundreds or thousands 
of years have elapsed since the initial state, and to 
subsequent interactions involving the buffer with 
a continuously evolving near-field environment. In 
such cases decisions as to what qualifies as an ad-
equate level of understanding in justifications from 
Posiva regarding bentonite exchangeability may 
have to be based largely on expert judgement, and 
may therefore be subject to differences of opinion. 
Factors that we believe STUK should consider when 
evaluating any such justifications in relation to 
long-term safety requirements are discussed below.

8.2	 Exchangeability in relation 
to performance targets

Because the long-term safety requirements dis-
cussed above are quite general, Posiva has defined 
a number of more specific “performance targets” for 
the buffer (e.g., Posiva, 2010, Section 6.1.4). These 
targets relate to properties that are either measure-
able or otherwise observable by modelling or other 
means. Posiva believes that if these targets are 
achieved then it can be assumed that the buffer’s 
safety functions will be met. Because the targets 
relate to the buffer, it follows that they must be 
achievable regardless of the type of bentonite used 
as the buffer material.

An example of the relation between long-term 
safety requirements and performance targets is 
illustrated in Figure 21, where it can be seen that 
target values are defined in terms of hydraulic con-
ductivity, swelling pressure and saturated density 
(Posiva, 2010). In this case, the curves represent-
ing changes in swelling pressure or hydraulic 
conductivity as a function of saturated density are 
based on measurements at room temperature in an 
experimental system containing MX-80 bentonite 
saturated with a 1 M NaCl solution (SKB, 2006). It 
should be noted that temperature above ambient 
would lead to a shift of the blue line downwards and 
narrow the applicable density window.

An objective and safety-relevant criterion for 
exchangeability suggested by Figure 21 is that 
any alternative bentonite subjected to the same 
experimental conditions should generate similar 
curves as shown in the figure such that the respec-
tive performance targets are met over a range of 
saturated densities that are achievable in practice. 
Such a criterion would be inherently empirical in 
nature because there is no reliable conceptual basis 



STUK-TR 12

45

for predicting target values based on initial-state 
properties such as mineralogy, mineral chemistry, 
water content, water chemistry and dry density. The 
design-basis requirement that bentonite contain at 
least 75 wt% montmorillonite, for example, is not 
based on theoretical predictions but rather on a 
large body of experimental evidence indicating that 
this is an adequate amount of montmorillonite to 
achieve swelling pressures between 2 and 10 MPa 
and hydraulic conductivities < 10-12 m s-1 if the 
saturated density is between 1950 and 2050 kg m-3 
and if groundwater salinities are within a range of 
values expected at Olkiluoto.

Should Posiva use such empirical performance-
target criteria as a basis for justifying the exchange-

ability of alternative bentonites, then a question 
that should be considered is whether the range of 
experimental conditions supporting such justifica-
tions has been determined in a manner that is both 
scientifically defensible and adequately bounding 
with respect to expected conditions in the repository 
and with respect to the different bentonite types 
being considered. For example, most swelling pres-
sure tests on MX-80, Milos Deponit CaN and other 
bentonite types (e.g., Karnland, 1997a; Pusch, 1999; 
Karnland et al., 2006; Carlson and Keto, 2006) have 
used pure water or simple NaCl or CaCl2 solutions 
to represent ranges in the chemistry of ground-
waters that could exist in KBS-3 repositories in 
Finland or Sweden (e.g., Pastina and Hellä, 2006). 

Figure 21. Diagram illustrating relations among various performance targets for the buffer as a 
function of saturated density (Posiva, 2010). The reference to SKB TR-06-09 is for SKB (2006).
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While this approach may be reasonably bounding 
with respect to the effects of salinity and Na+ and 
Ca2+ concentrations on swelling pressure it leaves 
open the question whether other solution properties, 
such as pH or the concentrations of other solutes 
such as Mg2+ and K+, could significantly affect the 
swelling pressure. Although such effects may be 
unlikely, it is difficult to rule them out completely 
given the empirical basis of current understanding 
concerning the effects of water chemistry and other 
properties on swelling pressure (Hedin, 2004). In 
such cases a limited number of confirmatory tests 
could help answer such questions and would en-
hance confidence that the respective performance 
targets are relevant to Okiluoto conditions.

8.3	 Exchangeability in relation 
to the target state

Justifications for the exchangeability of different 
bentonite types should consider potential impacts 
on performance targets and safety functions that 
could result as the buffer evolves from its initial 
state to the target state. As noted earlier, this evo-
lution will occur during a transient period lasting 
hundreds to thousands of years. The buffer will 
become fully saturated with groundwater during 
this time and will experience relatively high tem-
peratures and steep temperature gradients as heat 
dissipates into the host rock. A bentonite having a 
relatively low thermal conductivity and high con-
centration of accessory minerals such as anhydrite, 
for example, might be more susceptible to the effects 
of cementation during this transition period than 
the reference MX-80 material. If so, justification 
for the use of such a bentonite should include an 
analysis of why the effects of any cementation that 
could occur would not be sufficient to jeopardize the 
safety functions of the buffer.

To evaluate the exchangeability of bentonites 
from the perspective of changes that might occur 
to the buffer as the target state evolves from the 
initial state may be difficult for several reasons. 
Experimental support for such evaluations from 
studies such as the ABM and LOT tests can realis-
tically cover only a very small fraction of the total 
transition time. The evolution of the buffer during 
this time will likely be controlled by complex and 
possibly strongly coupled thermal, mass-transport, 
chemical/mineralogical and mechanical processes 

that may be difficult to adequately account for using 
numerical models. It may be difficult to verify that 
model predictions are reliable given the experimen-
tal limitations noted above and possible difficulties 
in interpreting initial and boundary conditions in 
studies of analogous natural systems. Even if such 
models were to prove useful in reliably predicting 
temporal and spatial changes in bentonite mineral-
ogy, it may be difficult to relate the effects of such 
changes to the buffer’s safety-relevant physical, 
thermal and rheological properties. These potential 
complications suggest that an integrated approach 
using the results of well-qualified experimental, 
modelling and natural-systems studies may be 
needed to evaluate the exchangeability of benton-
ites in relation to the target state of the buffer and 
its evolution from the initial state.

8.4	 Exchangeability in relation 
to potentially adverse 
near-field conditions

The response of different bentonite types to envi-
ronmental conditions that could pose a threat to 
buffer performance should be considered in evalua-
tions of bentonite exchangeability. Bentonites with 
montmorillonite predominantly in the Ca rather 
than Na form, for example, may be less susceptible 
to the effects of sol formation and erosion if the 
buffer were to come into contact with dilute ground-
waters. Should such erosion occur and result in a 
partial loss of density, certain bentonites may be 
able to sustain some, if not all, of their performance 
targets over a broader range of subsequently evolv-
ing groundwater salinities than others. Different 
bentonites may also be less susceptible than others 
to interactions involving cementitious materials or 
Fe-bearing repository components depending on the 
types, amounts and reactive surface areas of the 
smectite clays and accessory minerals. From this 
perspective differences rather than similarities in 
bentonite types may be the most important attrib-
utes concerning their exchangeability.

Evaluations of the exchangeability of bentonites 
from the perspective of potentially adverse condi-
tions in the near field may require consideration of 
experimental evidence and the results of modelling 
studies. General concerns related to such studies 
discussed in the preceding sections are also ap-
plicable here.
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8.5	 Summary
Summary comments from previous sections of this 
report are synthesised in Table 11. It may be seen 
from this Table that:
•	 There are some fundamental differences be-

tween Ca- and Na-bentonites such as colloidal 
behaviour, pore structure and long-term al-
teration that could affect the exchangeability of 
these materials as buffer or backfill materials 
and which should be further evaluated.

•	 Additional experimental data are desirable 
for some issues such as long-term alteration, 
hydraulic properties and swelling behaviour.

•	 The minor mineral content of bentonites is very 
variable, both between different bentonites and 
within the same bentonite type. It is not clear 
whether these minerals are performance-critical 
or not. An assessment of this issue is desirable.

Table 11. Synthesis of summary comments from previous sections.

Property Summary Comments

Composition 
& sources

• Only MX-80, Deponit CaN, Kutch ‘Basic Star’ meet > 75 % smectite 
criterion.
• Different bentonites contain different amounts of potentially safety-
relevant contaminants.
• Kutch bentonites have high contents of Fe3+ which may be detrimental 
to swelling in the long-term.
• MX-80 is consistent in composition of major minerals, but minor 
minerals show considerable variation.
• Wyoming and Greek bentonites have CEC ~1 eq kg-1, but have 
different charge compensating cations.
• Some bentonites have layer charge mainly in the octahedral layers 
(MX-80, Deponit CaN), whereas others (Indian type) have charge 
mainly in the octahedral layers.
• Backfill designs that include Friedland Clay or clay/ballast mixes 
require greater precision regarding emplacement density than those 
using Milos Bentonite.

It is clear that there is a wide 
range in minor mineral content of 
bentonites with consequent potential 
implications for properties and 
behaviour. 

Hydraulic 
behaviour

• There are few datasets describing the hydraulic behaviour of Ca-
bentonites.
• Ca-bentonite has a fundamentally different pore structure than Na-
bentonite.

Additional data on the hydraulic 
properties of Ca-bentonite are 
desirable. Nevertheless, there are 
fundamental differences between 
the hydraulic properties of Na- and 
Ca-bentonites.

Mechanical 
behaviour

• Ca-bentonite has greater strength and swelling pressure than Na-
bentonite.
• For tunnel backfill, clay-ballast mixtures have the greatest demands in 
terms of required density.

Design requirements for mechanical 
behaviour have (conservatively) been 
chosen by Posiva/SKB to be those 
defined by Ca-bentonites.

Long-term 
alteration

• Interaction of bentonite with groundwater is likely to lead to the 
dominance of Ca on the cation exchange site, regardless of the initial 
composition.
• Ca-bentonite may be more resistant to long-term alteration than Na-
bentonite.
• There are few experimental data, if any, for the alteration of Ca-
bentonite by cement pore fluids (especially the low-pH variety) or by 
iron container materials.

More experimental data for cement- 
and iron-clay interactions are 
desirable. Ca-bentonite may be more 
resistant to long-term alteration than 
Na-bentonite.

Colloidal 
properties

• Ca-bentonites with Ca/Na > 90/10 are much more resistant to colloid 
formation than Na-bentonites 
• Ca-bentonites could become more sodic with time due to interaction 
with ambient groundwater.

Bentonites with Ca/Na > 90/10 may be 
less susceptible to colloid formation, 
but long-term cation exchange with 
groundwater could be a problem.

Swelling 
behaviour

• Many different types of bentonite can achieve performance targets 
for swelling pressure, but there is a lack of experimental data for 
behaviour in mixed electrolyte solutions.
• Mechanistic models are not currently available.

Further experimental work with mixed 
electrolyte solutions is desirable 
along with further effort to develop a 
more mechanistic understanding of 
swelling behaviour.
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Posiva’s view that assessments of the exchangeabil-
ity of different bentonite types as buffer materials 
should be based on performance requirements for 
this engineered barrier seems reasonable, but the 
level of understanding needed to adequately sup-
port such assessments is not clear and would seem 
to depend on the types of requirements being con-
sidered. Assessments addressing long-term safety 
requirements may be the most challenging because 
these requirements relate to a target state of the 
buffer that will not be attained until hundreds or 
thousands of years have elapsed since the initial 
state, and to subsequent interactions involving 
the buffer with continuously evolving near-field 
conditions. Should such assessments be based in 

whole or in part on experimental testing, then it 
is important to consider whether the experimental 
conditions are appropriate and defensibly bound-
ing with respect to conditions expected in the near 
field over long periods of time. Assessments based 
on modelling should consider whether the models 
adequately represent thermal, mass-transport, 
chemical/mineralogical and mechanical processes 
controlling bentonite-water interactions, whether 
the reliability of the models has been verified to the 
extent possible in relation to relevant experimental 
and natural systems studies, and whether model 
results can be sensibly related to safety-relevant 
physical, thermal and rheological properties of the 
buffer.
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