5.2001

Lääkekulutustiedot kaikkien käyttöön 5 Masennuslääkkeiden käyttö ahdistuneisuushäiriöissä 6 Galantamiini 9 Levosimendaani 10 Linetsolidi 11 Lääkkeet ja ikenen liikakasvu 13 Ehkäisytablettien turvallisuutta arvioitu Euroopan lääkearviointivirastossa 16 Tuleh-
Sammandrag

Ledare
Katja Lindgren-Äimänen | Ulla Närhi 28 Information om läkemedelskonsumtion tillgänglig för alla
Hannu Koponen 29 Användning av antidepressiva vid ångeststörningar

Om bliverkningar
Hellevi Ruokonen 32 Läkemedel och gingival hyperplasi

FPA nyheter
Timo Klaauka | Sinikka Rajaniemi 35 Specialersättning har inte påskyndat ökningen av statin-användningen

Ex tempore

37 Införsel från utlandet av läkemedelspreparat som innehåller metadon för personlig medicinering
37 Spelregel för elektroniska recept

Summary

Editorial
Katja Lindgren-Äimänen | Ulla Närhi 38 Information on medicine consumption available to everyone
Hannu Koponen 39 Antidepressants used in anxiety disorders

ADR News
Hellevi Ruokonen 42 Drugs and gingival overgrowth

Drug use
Tinna Voipio 45 Consumption of anti-inflammatory analgesics: the effect of the switch to OTC

49 Läkelaitoksen päätöksiä
Information on medicines and medicine consumption is widely needed in society. There is a demand especially for unbiased and objective information, which the National Agency for Medicines has at its disposal. Collecting the latest information on the sales and consumption of medicines, and knowing the current trends in the pharmaceutical field, are closely linked with monitoring the safety of medicines.

The National Agency for Medicines wants to provide the latest information on medicines more openly than before. Openness, flexibility, interactivity and activity in communications are also part of the government communication policy, as recommended last spring by the Working Group on Governmental Communication in the 2000s.

In October, the National Agency for Medicines will start publishing on Internet pages (www.nam.fi) medicine consumption statistics based on the data in the Register of Medicine Sales. Annual medicine consumption statistics have been published since 1987 jointly by the National Agency for Medicines and the Social Insurance Institution under the title Finnish Statistics on Medicines. The electronic version of consumption figures for the year 2000 will complement the printed volume. Both versions will be published in October.

The data in the Register of Medicine Sales is based on the monthly sales figures reported by pharmaceutical wholesalers. The medicine consumption by each therapy group is monitored on the basis of this data. Medicine consumption is expressed in terms of defined daily doses (DDD/1,000 inh. /day). Defined daily dose is an internationally used term for the consumption of medicines, where the quantities of medicines sold are converted to a figure expressing the defined daily dose relative to 1,000 inhabitants per the total population per day. Medicines are categorised according to the anatomic-therapeutic-chemical (ATC) classification system.

At first, the medicine consumption statistics published on the Internet will be the same as those published in the printed format. The charts will include the annual statistics for 1999 and 2000. Medicine consumption statistics will also be represented graphically based on selected charts.

In the future, our objective is to develop a user-friendly package by facilitating the search for information further. When compiling statistics, we can also make use of regional consumption figures, and data on medicine consumption in earlier years. By monitoring the medicine sales patterns, we can draw conclusions on changes in medicine prescription practices and assess the rationale behind such changes. We would welcome any feedback on the publication of medicine consumption statistics, and suggestions for improvement. Please send your suggestions by e-mail to: salesstatistics@nam.fi.

The rearranging of the National Agency for Medicines’ web site has begun. In the course of the autumn we will classify the web pages according to various interest groups, and create information service packages catering for their needs. We can then use this active communications channel as a medium for publishing news and current affairs. In the future, we plan to supply even more information on medicines and on the activities of the National Agency for Medicines on our renewed web site.

The Scandinavian countries supply similar data on medicine consumption at the following Internet addresses:

- Denmark: http://www.dkma.dk
- Finland: http://www.nam.fi
- Norway: http://www.drugconsumption.nmd.no
- Sweden: http://www.apoteket.se

Translation Liisa Fellman-Paul

Summary
Katja Lindgren-Äimänen
Communications Officer, MSc (Pol)
Department of General Affairs

Ulla Näärhi
Senior Pharmaceutical Officer, PhD (Pharm)
Drug Information Centre

National Agency for Medicines

Information on medicine consumption available to everyone

Information on medicines and medicine consumption is widely needed in society. There is a demand especially for unbiased and objective information, which the National Agency for Medicines has at its disposal. Collecting the latest information on the sales and consumption of medicines, and knowing the current trends in the pharmaceutical field, are closely linked with monitoring the safety of medicines.

The National Agency for Medicines wants to provide the latest information on medicines more openly than before. Openness, flexibility, interactivity and activity in communications are also part of the government communication policy, as recommended last spring by the Working Group on Governmental Communication in the 2000s.

In October, the National Agency for Medicines will start publishing on Internet pages (www.nam.fi) medicine consumption statistics based on the data in the Register of Medicine Sales. Annual medicine consumption statistics have been published since 1987 jointly by the National Agency for Medicines and the Social Insurance Institution under the title Finnish Statistics on Medicines. The electronic version of consumption figures for the year 2000 will complement the printed volume. Both versions will be published in October.

The data in the Register of Medicine Sales is based on the monthly sales figures reported by pharmaceutical wholesalers. The medicine consumption by each therapy group is monitored on the basis of this data. Medicine consumption is expressed in terms of defined daily doses (DDD/1,000 inh. /day). Defined daily dose is an internationally used term for the consumption of medicines, where the quantities of medicines sold are converted to a figure expressing the defined daily dose relative to 1,000 inhabitants per the total population per day. Medicines are categorised according to the anatomic-therapeutic-chemical (ATC) classification system.

At first, the medicine consumption statistics published on the Internet will be the same as those published in the printed format. The charts will include the annual statistics for 1999 and 2000. Medicine consumption statistics will also be represented graphically based on selected charts.

In the future, our objective is to develop a user-friendly package by facilitating the search for information further. When compiling statistics, we can also make use of regional consumption figures, and data on medicine consumption in earlier years. By monitoring the medicine sales patterns, we can draw conclusions on changes in medicine prescription practices and assess the rationale behind such changes. We would welcome any feedback on the publication of medicine consumption statistics, and suggestions for improvement. Please send your suggestions by e-mail to: salesstatistics@nam.fi.

The rearranging of the National Agency for Medicines’ web site has begun. In the course of the autumn we will classify the web pages according to various interest groups, and create information service packages catering for their needs. We can then use this active communications channel as a medium for publishing news and current affairs. In the future, we plan to supply even more information on medicines and on the activities of the National Agency for Medicines on our renewed web site.

The Scandinavian countries supply similar data on medicine consumption at the following Internet addresses:

- Denmark: http://www.dkma.dk
- Finland: http://www.nam.fi
- Norway: http://www.drugconsumption.nmd.no
- Sweden: http://www.apoteket.se

Translation Liisa Fellman-Paul
Normal anxiety signals a threat and serves as encouragement to a person to cope with the impending situation on his/her own. Anxiety also promotes the feeling of togetherness and improves emotional ties between individuals, thereby helping the community to cope better. Anxiety may be considered exceptional if its duration or degree of severity is unbalanced in relation to the threat causing the anxiety or if the anxiety occurs without a triggering factor. Anxiety disorders (Table 1) are the commonest of the psychiatric disorders, occurring in at least 7–10% of Finns according to earlier reports (Lehtinen et al. 1990), though even higher frequencies of over 15% in western countries have been reported (e.g. Kessler et al. 1994). Anxiety disorders are associated with a significant reduction in ability to function, reduced ability to work and concurrent illnesses such as depression.

Causes of exceptional anxiety have been thought to consist of internal mental conflicts, unusual conditioning, or disturbances in the cognitive treatment of emotional states. According to recent studies, besides factors associated with the growing environment, genetic factors also play a role (Kendler et al. 2001). From the point of view of neurobiology, anxiety is a state which is developed jointly through the brainstem, the limbic system, prefrontal areas of the cerebral cortex and the cerebellum. The nuclei of the brainstem, e.g. the locus coeruleus, take part in the control of alertness, whereas the limbic system controls the physiological and emotional responses associated with the threat factors. The hippocampus and amygdala also play an important role in the control of the content of memory associated with emotional states. The prefrontal areas control the management of action and decisionmaking. These functions are mediated via several neurotransmitters such as gamma-aminobutyric acid, noradrenaline, serotonin and corticotropin-releasing hormone, which offers the opportunity for medical interference with the activity of nerve networks important in the development of anxiety disorders (Noyes and Hoehn-Saric 1998).

The serotonin pathways start from a nucleus in the median raphe of the medulla and continues to the limbic and nigrostriatal area and the cerebral cortex. At least 14 different serotonin receptors have been detected with certainty, and consequently the effects of the serotonergic network on anxiety are varied and partly also conflicting. The serotonin system reduces the prefrontal cerebral cortex activity and stabilises alertness by its effect on the locus coeruleus. These effects reduce anxiety and explain the anxiety-removing effect of drugs with an influence on the serotonin system (Shelton and Brown 2001). Antidepressants may also have beneficial neuroprotective effects (Raid and Stewart 2001).

Anti-anxiety drugs
Ethanol, bromides, paraldehyde, barbiturates and meprobamate have previously been used for anxiety and sleep disturbances with varied success. Their use was, however, associated with considerable problems of dosage, toxic effects and drug dependence, and consequently the benzodiazepines developed at the end of the 1950s rapidly attained an important position in the treatment of anxiety disorders. In some patients, and es-

Summary

Hannu Koponen
Professor
Department of Psychiatry
University of Oulu
Chief Physician
Hospital District of Lapland

Antidepressants used in anxiety disorders

Anxiety disorders are common psychiatric disorders often of long duration, with a significant effect on the patient’s ability to function and the quality of life of the sufferers. They are also associated with a considerable risk of concurrent illnesses such as severe depression and drug/alcohol abuse. During the last decade, a lot of new information which can be applied in clinical practice has emerged regarding the medical treatment of anxiety disorders. The following survey discusses the biological background of anxiety disorders and the possibilities of medical treatment of panic disorders, social phobia, obsessive-compulsive disorders and generalised anxiety disorders.

Table 1. Neurotic somatoform disorders associated with stress (Disease classification ICD-10 1997)

- phobic anxiety disorders
 - agoraphobia
 - social phobia
 - defined (individual) fears
- other anxiety disorders
 - panic disorder
 - generalised anxiety disorder
 - mixed anxiety disorder and depression
 - obsessive-compulsive disorder
especially on long-term use, they are, however, associated with problems of dependence, tolerance and the necessity of increasing the dose; which is why other psychotropic drugs (traditional antipsychotics and tricyclic antidepressants previously, and more recent antidepressants to an increasing degree since the beginning of the 1990s) have been used in long-term treatment of anxiety disorders (Lepola 1999). New groups of drugs to treat anxiety disorders are also under development which, in their mechanism of action, differ from the foregoing.

Antidepressants in anxiety disorders

Among antidepressants imipramine, for instance, has been used since as early as the 1960s in long-term treatment of anxiety disorders such as panic disorder. However, antidepressants mainly affecting the serotonergic activity and introduced to the market at the turn of the decade of 1980/1990 and new two-channel antidepressants introduced into use after the mid 1990s, have widened their use in the treatment of anxiety disorders, partly due to the improved tolerability of new molecules.

The efficacy of antidepressants is based on their regular use and it may take several months until any response emerges (Table 2). When antidepressants are used to treat anxiety disorders, the treatment should usually be started with a small initial dose and the dose should thereafter be increased slowly to avoid adverse effects in the initial stages. The therapeutic doses used are nevertheless similar to those used in the treatment of depression (Leinonen et al. 2000). Treatment of anxiety disorders is often long-term, but there are very few studies of the time scales used in the treatment. Clinical experience has shown, however, that a minimum 6–12 months of treatment is required in most anxiety disorders. Adverse effects associated with the use of antidepressants, the most common of which are initial nausea, and sexual adverse effects and increased sweating on longer term use, have not usually obstructed the treatment, and this is especially important in disorders requiring long-term treatment. Towards the end of the medical treatment, gradual withdrawal of medication is often advisable (Michelson et al. 2000).

Generalised anxiety

The important symptoms of generalised anxiety include anxiety, excessive care and various somatic symptoms associated with these. Its lifelong prevalence is on average 5–6% and it is often associated with other concurrent psychiatric disturbances such as depression and drug abuse. As a disturbance of long duration, it usually has a significant adverse effect on the ability to function. The number of drug trials in generalised anxiety is smaller than that in other anxiety disorders, but in studies with paroxetine and venlafaxine, for instance, the initial signs of the effect of treatment have been visible within 2–3 weeks and the response has improved with higher doses (Allgulander et al. 2001).

Panic disorder

Panic disorder is characterised by severe mental attacks of anxiety which, besides various somatic symptoms, are also associated with a fear of death or a fear of losing control and becoming insane. Panic disorders may occur spontaneously or they may be associated with various situations. The life-long prevalence of panic disorders is estimated at about 3% (Academy of Finland 2000). They are also associated with a considerable risk of depression when the patient’s symptoms worsen, and concurrent depression is also associated with a higher risk of suicide and a more severe reduction in the quality of life (Roy-Byrne et al. 2000).

Previously, panic disorders were often treated with benzodiazepines, but the primary medical treatment for panic disorders nowadays consists of selective serotonin re-uptake inhibitors. The efficacy of all serotonin selective antidepressants in use

| Table 2: A comparison of properties of benzodiazepines, buspirone and antidepressants. |
|---------------------------------|-----------------|-----------------|-----------------|
| **Single dose is effective** | Yes | Yes | No |
| **Time before the start of complete response** | Days | Weeks | Weeks |
| **Tiredness** | Yes | No | No |
| **Risk of dependence** | Yes | No | No |
| **Impairs performance** | Yes | No | No |
| **Decreases withdrawal symptoms** | Yes | No | No |
| **Dosage once a day** | No | No | Yes |
| **Efficacy in concurrent depression** | No | No | Yes |
| **Most common adverse effects** | Tiredness, memory disturbances | Anxiety, nervousness | Gastrointestinal symptoms, disturbances of sexual function |
in Finland is documented in the treatment of panic disorders. Initial- ly, a small dose should be used which is then increased to the thera- peutic dose within a couple of weeks. A response to treatment is usually obtained within 3–6 weeks of treatment and the treatment should be continued for at least 6–12 months after recovery (Lepola et al. 1998).

Social phobia

Social phobia is the most common anxiety disorder occurring in the general public. Epidemiological studies have found its prevalence to be around 4–8%, and symptoms occur- ring in most situations associated with performance and interaction have an especially significant ad- verse effect on education, work and quality of life (Stein et al. 2000). New antidepressants and behaviour- al therapy are also beneficial in the treatment of social phobia, and the combined use of these forms of treatment is recommended at least for the most severe symptoms (Blom- hoff et al. 2001). The use of anti- depressants in long-term treatment of social phobia is also supported by the risk of depression associated with this disorder. Bouts of depres- sion occur in about a half of these patients, and social phobia in ado- lescents or young adults is consid- ered to be a risk factor for bouts of depression later in life (Stein et al. 2001).

Obsessive-compulsive disorder

Obsessive-compulsive disorder was previously considered rare, but epi- demiological studies have changed the estimate of its prevalence be- cause 1–2.5% of the adult popula- tion suffers from this type of anxiety disorder. Even though few people recover totally with treatment, the aim of treatment is to diminish the occurrence of symptoms and ad- verse effects on the daily life. The symptoms of patients who benefit from treatment are usually reduced by 30–70%, and the treatment of patients with a positive response should be continued for at least one year, often even longer. A significant risk of depression is associated with obsessive-compulsive disorder, and about 60% of patients suffer from severe depression at some stage of their lives. Antidepressants based on serotonin re-uptake inhibition are effective in the treatment of ob- sessive-compulsive disorder, and the doses used are often at the upper end of the dosage scale (Koponen et al. 1997). Patients with obsessive-compulsive disorder do not, howev- er, benefit from benzodiazepines or antipsychotics. Antidepressants are an effective alternative also for pa- tients who suffer from depression in addition to obsessive-compulsive disorder (Hoehn-Saric et al. 2000).

Conclusion

Anxiety disorders are common and they are associated with significant adverse effects in the form of sub- jective suffering, reduced capacity for work and other concurrent dis- abilities. For the treatment of anxie- ty disorders of long duration, the aim has been to develop forms of treatment with improved tolerability and without associated dependence- forming tendencies, examples of which are the use of serotoninselect- ive and new two-channel anti- depressants in different anxiety disor- ders. In the treatment of anxiety of short duration, benzodiazepines still offer the most commonly used choice of medical treatment, even though drugs with similar effects but without the associated adverse effects are continuously being devel- oped.

Literature

Two of the most important drugs with gingival overgrowth (gingival hyperplasia) are ciclosporin (1), and calcium channel blockers (2,3). Phenytoin has also been reported to have caused gingival overgrowth (4), (Table). Phenytoin-induced gingival overgrowth is, however, seen by a dentist less frequently nowadays as other drugs are also used for the treatment of epilepsy today.

The term gingival hyperplasia has been used hitherto in the literature for gingival overgrowth. Gingival hyperplasia denotes a condition where the number of cells in the tissue is increased. From a histological point of view, the number of fibroblasts in drug-induced gingival overgrowth is not increased significantly, but the amount of collagen and intercellular material produced by them is, probably due to the reduced rate of metabolism (5,6). Consequently, the English literature nowadays most often uses the term gingival overgrowth or gingival enlargement rather than gingival hyperplasia.

Gingival overgrowth hinders the daily cleaning of the teeth and causes plaque accumulation, and may thereby perpetuate gingivitis. On the other hand, the development of overgrowth is encouraged by gingivitis associated with poor oral hygiene or by periodontitis, an infection which has advanced further to the periodontium of the teeth. Gingival overgrowth often starts in the interdental spaces and is usually more prominent on the labial surfaces of the teeth than on the palatal or lingual surfaces. In severe cases the overgrowth is generalised in the entire dental area and may be extended as far as the occlusal surfaces of the teeth or on the palatal or lingual surfaces. In severe cases the overgrowth is generalised in the entire dental area and may be extended as far as the occlusal surfaces of the teeth, interfering with chewing (Fig. 1 a and b). Gingival overgrowth is often a functional as well as a cosmetic impediment. In association with ciclosporine, the possible development of malignancies should also be considered; squamous cell carcinoma and Kaposi’s sarcoma have been reported in the literature (7,8). Overgrowth should consequently be removed surgically and a tissue sample taken for histological examination (9).

Ciclosporin
Ciclosporin is an immunosuppressive agent which is used to prevent organ rejection in kidney, liver, heart, heart-lung, lung or pancreas transplantation. It is also used in bone marrow transplantations both for the prevention and treatment of graft-versus-host disease (GVHD). Other indications for ciclosporin include rheumatoid arthritis, nephrotic syndrome, endogenous uveitis, severe psoriasis and severe atopic dermatitis (10,11).

Ciclosporin is a cyclic polypeptide consisting of 11 amino acids. It prevents the development of cell-mediated reactions by inhibiting T-cell proliferation. At the cell level, ciclosporin prevents the generation and release of lymphokines, including interleukin-2. Ciclosporin inhibits T-
cell activation at the start of the cell cycle by preventing the release of lymphokines. It has a less important effect on B-cell activity and it does not interfere with haemopoiesis or influence the phagocyte activity (10, 12,13).

Gingival overgrowth was reported for the first time in the literature in 1983 (1). The prevalence of overgrowth in organ transplant patients varies considerably according to different studies (8%–70%), most likely due to the variety of patient groups (11,14). The prevalence in children has been reported to be as high as 80% (15,16). Fibrotic, thickened gums in children may prevent the normal eruption of permanent teeth (Fig. 2 a and b). There are no reports in the literature of overgrowth caused by ciclosporin in edentulous areas.

Overgrowth typically begins at the gingival papillae. Overgrown excessive tissue must often be removed surgically before maintenance of the patient’s normal oral hygiene is even possible (Fig. 3 a and b).

Calcium channel blockers
The first case of gingival overgrowth developed as an adverse effect of calcium channel blockers was associated with nifedipine and was reported in 1984 (2). Gingival overgrowth has also been reported of verapamil (3), amloidipine (17), felodipine (18) and diltiazem (19). Gingival overgrowth caused by calcium channel blockers is clinically similar to that caused by ciclosporine or phenytoin, see Fig. 4 a and b.

Calcium channel blockers are often used for the treatment of hypertension in kidney transplant patients. Kidney transplant patients receiving nifedipine in addition to ciclosporine have a higher risk of developing overgrowth (9,20). According to one study, the extent and severity of overgrowth is significantly related to the plasma concentration of ciclosporine (21).

Phenytoin
Gingival overgrowth caused by phenytoin was reported for the first time in medical literature over 60 years ago (4). Studies have shown a correlation between the gingival overgrowth caused by bacterial plaques and dental calculus and that caused by phenytoin (22,23). Gingival overgrowth typically starts from gingival papillae and is often localised to the area of the front teeth. Overgrowth can occur in the entire dental area. Overgrowth caused by phenytoin has also been reported in edentulous patients (24).

Treatment
Treatment of gingival overgrowth consists of its surgical removal. The overgrowth can be removed by gingivectomy or periodontal flap surgery (25). In gingivectomy, the surface of the wound is often treated with a CO2 laser. The benefits of the use of a CO2 laser are: good haemostasis, reduced postoperative pain and swelling, and a sterilising effect on the wound surface. The patient should be provided with a total dental treatment plan which would include the extraction of teeth with poor prognosis and the planning of basic periodontal treatment with associated removal of overhanging margins of fillings and crowns and dental calculus and instruction of the patient in a correct dental cleaning technique. Changes caused by plaque-retaining caries should be treated with fillings. Prevention of overgrowth includes careful dental care at home and professional cleaning of teeth carried out by a dentist or a specialised den-
Changes and the consequent inflammatory associated with poor oral hygiene overgrowth is encouraged by plaque at home, since the development of odontium, and careful self-treatment overgrowth is therefore not possible. The only remaining membrane. Alternative drugs are of- inflow of calcium ions into the cell they have an inhibiting effect on the growth caused by ciclosporine, calci- The pathogenesis of gingival over- growth (26,27). Azithromycin is a azalide group. The agent is strongly bound to the tissues; pharmacoki- netic studies have detected consider- ably higher concentrations in tissue than in the plasma. There are no studies, however, of the interactions of azithromycin and ciclosporine, and consequently the circumstances of treatment should be carefully considered before these drugs are used concurrently (10).

Summary
The pathogenesis of gingival over- growth caused by ciclosporine, calci- sum channel blockers and phenytoingrowth (26,27). Azithromycin is a azalide group. The agent is strongly bound to the tissues; pharmacoki- netic studies have detected consider- ably higher concentrations in tissue than in the plasma. There are no studies, however, of the interactions of azithromycin and ciclosporine, and consequently the circumstances of treatment should be carefully considered before these drugs are used concurrently (10).

Summary
The pathogenesis of gingival over- growth caused by ciclosporine, calci- um channel blockers and phenytoin is not known. An interaction of sev- eral varying factors is likely. A com- mon pointer for these drugs is that they have an inhibiting effect on the inflow of calcium ions into the cell membrane. Alternative drugs are of- ten not possible. The only remaining alternative treatment is therefore surgical removal of the gingival overgrowth, treatment of the peri- odontum, and careful self-treatment at home, since the development of overgrowth is encouraged by plaque associated with poor oral hygiene and the consequent inflammatory changes.

Literature
Acetylsalicylic acid (ASA), numbers of combination preparations containing ASA, and paracetamol have traditionally been available in Finland without a prescription (over-the-counter, OTC) for the treatment of pain and fever. More recent anti-inflammatory drugs, ibuprofen and ketoprofen, have later been included among these OTC drugs. The consumption of anti-inflammatory drugs has been widely discussed. OTC category has been expected to boost the sales of the preparation due, for instance, to improved availability and permitted marketing to the general public. A survey has been made of the effects that the switch to OTC drugs has had on the consumption of anti-inflammatory drugs (1). In this article the figures from the survey have been augmented with the sales figures for 2000. The target of the survey is the consumption of anti-inflammatory analgesics and paracetamol (DDD/1,000 inhabitants/day) during 1989–2000.

Consumption of anti-inflammatory analgesics available now: days include ketoprofen and dextroprofen plain, and ASA, ibuprofen and paracetamol both plain or as combination preparations which also include active ingredients such as vitamin C, caffeine and/or an antitussive. In association with renewals of marketing authorisations for analgesics in 1998 it was considered that combination preparations consisting of one or more ASA derivatives or containing combinations of codeine and caffeine were no longer appropriate today in the light of their efficacy and safety, and their marketing authorisations were consequently no longer renewed.

Ibuprofen and ketoprofen as OTC drugs
The first OTC preparations of 200 mg ibuprofen in packages of 20 tablets were introduced on the market in 1987, and 400 mg ibuprofen in 10-tablet packages was introduced in June 1989. Since OTC preparations are mainly intended for temporary use, the total amount of ibuprofen in OTC packages is restricted to 4 grams. No special safety risks have been reported from the subsequent OTC use of ibuprofen. In 2000, ibuprofen accounted for 55% of the retail sale value, and 59% of the consumption, of OTC analgesics.

The introduction of ketoprofen in an OTC status has been more complicated. Small packages of ketoprofen 30 mg (15 capsules and 10 tablets) were brought on to OTC market in September 1992. Discussions on the efficacy and safety of ketoprofen in large doses were started soon afterwards. As knowledge about the use improved, it emerged that, in many cases, a sufficient effect is reached with a single dose of as little as 25 mg, and that the efficacy is not significantly increased by further increases in dose. Increasing the dose nevertheless increases the adverse effects considerably (2). It was consequently considered inappropriate to retain the 50 mg strength among the OTC range. It was transferred back to the POM-category in July 1996, while small packages of 25 mg ketoprofen remained among the OTC drugs.

Total consumption of anti-inflammatory analgesics
The total consumption (DDD/1,000 inhabitants/day) of anti-inflammatory analgesics during the past 12 years has increased by 16% (OTC drugs by 3% and prescription drugs by 26%, Fig. 1). The increase has not been steady, but the consumption has both decreased and increased during the survey period.

Consumption of anti-inflammatory prescription drugs
The biggest changes have occurred in the consumption of ketoprofen and ibuprofen (Fig. 2). The consumption of ketoprofen peaked in 1994, totalling 11.86 DDD/1,000 inhabitants/day. The consumption has decreased since and totalled 9.07 DDD/inhabitants/day in 2000. The increase in consumption of...
Ibuprofen occurred towards the end of the survey period. It is the most commonly used anti-inflammatory analgesic in Finland at present.

The consumption of naproxen increased steadily at the beginning of the survey period and peaked (9.12 DDD/1,000 inhabitants/day) in 1996, when it was the most commonly used anti-inflammatory analgesic. Its use has since gradually decreased.

The consumption of paracetamol has increased steadily since its modest start. The consumption of nimesulide, introduced on to the market in 1997, has increased sharply. By 2000 it was already the third most commonly used anti-inflammatory drug with consumption reaching 6.24 DDD/1,000 inhabitants/day.

The consumption of diclofenac has remained steady during the entire survey period. The consumption of tolfenamic acid, indometacin and piroxicam has decreased continuously.

Consumption of OTC drugs

The consumption of OTC drugs has increased by only 3% during the past 12 years, and there has been a concurrent switch in consumption from combination preparations to preparations consisting of only one active substance. The consumption of preparations containing one active substance has increased by 29% and the consumption of combination preparations has decreased by 65% (Fig. 3).

The biggest changes in the consumption of OTC preparations are found in the decreased consumption of combination preparations and ASA and in the increased consumption of ibuprofen (Fig. 4).

ASA used to be the most commonly used analgesic in self-medication. Its consumption has decreased continuously during the last ten years. The consumption of ASA (DDD/1,000 inhabitants/day) has decreased by 62% in 12 years. The decrease has been steady except for a rise which occurred in 1993.

The consumption of OTC preparations of ibuprofen has been constantly on the increase. In 1995, its consumption reached the level of that of ASA and since 1996 it has
been the most commonly used anti-inflammatory OTC drug (Fig. 4–5). Ketoprofen became an OTC drug in 1992. At first, its consumption increased greatly until 1993; it then dropped in 1994, and a downward trend began again in 1996 (Fig. 4 and 5).

What influences the choice of drug?
A report based on an analysis of an extensive literature survey states that no significant differences can be found in efficacy between the various anti-inflammatory analgesics. On the other hand, the profiles of the adverse effects of the preparations differ more clearly from one another (3). The use of anti-inflammatory analgesics is associated with increased risk of GI bleeding. It has been estimated that the incidence of GI bleeding could decrease even by 70% if the NSAIDs with lowest risk would be used (4).

It could be assumed that the significance of adverse effects would be the key issue in the choice of drug. When the bases for choice of drug have been reviewed by classifying anti-inflammatory analgesics into low risk and high risk preparations in view of their gastrointestinal adverse effects, it has been found that the choice of drug in Denmark, Italy and Sweden varied between the countries to such an extent that the information compiled on adverse effects did not appear to control the choice (5). In Finland, the present consumption appears to favour anti-inflammatory analgesics with lower risk of GI bleeding.

The effect of the switch to OTC category
According to a report drawn up in Sweden, switches to self-medication made in 1980–1994 increased the consumption of these drugs by an average of 36% within two years of the switch. There were nevertheless large individual variations among the drugs. Consumption of the same drugs by prescription decreased by 26% at the same time (6). The report dealt with all the preparations which were switched to being available for self-medication, and was not targeted, for example, at analgesics.

A study in the USA discussed the effect of switching \(H_3 \) blockers to the OTC category according to the number of prescriptions issued. The study found that the reduction in the number of prescriptions of \(H_3 \) blockers was statistically significant. Nevertheless, the number of doctor’s appointments arising from gastrointestinal diseases did not increase (7). Indirectly, it could be assumed that patients switched over to self-medication as and when it became possible. The sales of \(H_3 \) blockers by pre-
Part of the drop is explained by the reduction in consumption, but part of it can be explained by the shift to a lower strength. Looking at the number of sold doses (tablets, capsules) in OTC use, the drop has only been 27% (Fig. 6). Subsequently, the number of drug doses used in self-medication did not drop as much as an examination of the DDD values (150 mg) suggests. The previously used strength of 50 mg in self-medication was replaced by 25 mg. The consumption and sales of ketoprofen OTC have remained fairly steady since 1996.

Conclusions

During the survey period, various circumstances and factors associated in particular with ketoprofen may explain its present position on the anti-inflammatory analgesic market. Based on the information from this survey alone, it is impossible to say which factors have been decisive at their respective points in time. After sharp rises and falls in sales figures in the first years, ketoprofen appears to have attained a steady sale in the OTC market. The sales and consumption of ibuprofen have been characterised by a constant upward trend. Its sales as a prescription drug dropped slightly only at the beginning of the 1990s. This may have been associated with its switch to OTC use. The situation changed thereafter and ibuprofen is today the most commonly used anti-inflammatory analgesic, both OTC and by prescription. In OTC use, the consumption has switched from ASA and its combination preparations to ibuprofen. In the light of the survey it can be established that:

- the total consumption of anti-inflammatory analgesics has remained fairly steady during the entire survey period.
- switching from one drug to another does occur. While ibuprofen has gained large popularity, the use of other anti-inflammatory drugs has decreased.
- the consumption is not automatically increased by a switch to OTC use, but consumption is influenced by several factors. This can be seen by examining the curve of development of sales of ketoprofen.

- a switch to OTC use appears at least temporarily to diminish the consumption of the drug by prescription.

Literature

