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Global warming has increased the likelihood of heat waves also in high latitude regions not accustomed to 

high temperatures.  This has made the evaluation of potential human health consequences and need for ad-

aptation in the health care sector more urgent.  In this study, we examine the effects of high temperatures on 

morbidity and mortality in Finland. Individual level data for the total population on hospital visits, causes of 

death, demographic and socioeconomic information as well as daily weather data are used to study outcomes 

at the municipality-month level over a span of 20 years. Panel data linear regression methods are utilized 

alongside high-dimensional fixed effects minimizing confounding variation. Analysis is conducted by age 

groups with special emphasis on the elderly population, as well as for specific elderly risk groups identified in 

previous literature. We also differentiate both morbidity and mortality effects cause-specifically with a broad 

set of different discharge diagnosis groups and the most common causes of death. The models show a clear 

increase in the number of acute all-cause and cause-specific hospital visits as well as all-cause and cause-

specific mortality that disproportionately affect the elderly population. We also find some evidence that heat-

waves might affect certain vulnerable population groups more intensely. The evidence can be used in identi-

fying vulnerable groups as extreme heat waves are expected to become more frequent and intense. The study 

has been financed by the Academy of Finland and it is part of the project “Climate change and Health: Adapting 

to Mental, Physical and Societal challenges” (CHAMPS).
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Global warming has increased the likelihood of heat waves also in high latitude regions not accustomed to 

high temperatures.  This has made the evaluation of potential human health consequences and need foradap-

tation in the health care sector more urgent.  In this study, we examine the effects of high temperatures on 

morbidity and mortality in Finland. Individual level data for the total population on hospital visits, causes of 

death, demographic and socioeconomic information as well as daily weather data are usedto study outcomes 

at the municipality-month level over a span of 20 years. Panel data linear regression methods are utilized 

alongside high-dimensional fixed effects minimizing confounding variation. Analysis is conducted by age 

groups with special emphasis on the elderly population, as well as for specific elderly risk groups identified 

in previous literature. We also differentiate both morbidity and mortality effects cause-specifically with a 

broad set of different discharge diagnosis groups and the most common causes of death. The models show a 

clear increase in the number of acute all-cause and cause-specific hospital visits as well as all-cause and 

cause-specific mortality that disproportionately affect the elderly population.  We also find some evidence 

that heatwaves might affect certain vulnerable population groups more intensely. The evidence can be used 

in identifying vulnerable groups as extreme heat waves are expected to become more frequent and intense. 

The study has been financed by the Academy of Finland and it is part of the project “Climate change and 

Health: Adapting to Mental, Physical and Societal challenges” (CHAMPS). 
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Ilmastonmuutos on lisännyt lämpöaaltojen todennäköisyyttä myös Suomessa, jossa kuumiin olosuhteisiin ei 

olla totuttu. Tämä on tehnyt terveysvaikutuksien arvioinnin ja terveydenhuoltojärjestelmän valmistautumisen 

entistä tärkeämmäksi. Tässä tutkimuksessa käytettiin yksilötason dataa sairaalakäynneistä, kuolleisuudesta 

ja perustiedoista sekä päivittäistä säädataa 20 vuoden ajalta lämpösairastavuus- ja lämpökuolleisuustarkaste-

luissa kunta-kuukausitasolla. Metodina käytimme lineaarista regressiota hyödyntäen kiinteitä vaikutuksia, 

jotka minimoivat havaitsemattomien sekoittavien tekijöiden vaikutuksia. Analysoimme lopputulemia erik-

seen ikäryhmittäin sekä diagnoosi- ja kuolinsyyryhmittäin. Analysoimme erikseen ikääntyneen väestön kes-

kuudessa niitä ryhmiä, jotka aiempi kirjallisuus on tunnistanut riskiryhmiksi. Tuloksemme näyttävät, että 

kuolleisuus ja erikoissairaanhoidon käynnit lisääntyivät selkeästi lämpimien päivien lukumäärän kasvaessa. 

Vaikutukset ovat useimmiten voimakkaampia ikääntyneessä väestössä. Tuloksemme osoittavat, että kuollei-

suus on suurempaa aiemman kirjallisuuden osoittamissa riskiryhmissä. Tuloksiamme voidaan käyttää poten-

tiaalisten riskiryhmien tunnistamiseen Suomessa, jossa lämpöaallot ovat yleistymässä ja voimistumassa. Tut-

kimus on saanut rahoitusta Suomen akatemialta ja on osa tutkimushanketta ”Psyykkinen ja fyysinen terveys 

sekä yhteiskunnalliset haasteet ilmastonmuutokseen sopeutumisessa” (CHAMPS). 

Avainsanat: ilmastonmuutos, lämpöaallot, terveys, kuolleisuus  
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1. Introduction 

According to the latest report by the Intergovernmental Panel on Climate Change (IPCC, 2021), we are 

on course towards global warming of 1.5ºC, in relation to 1850-1900, in the next two decades. Changes 

in global mean temperatures have disproportionate effects on the frequency of rare events such as 

extreme heat waves. For example, the report projects that extreme heat events which, in the period 

1850-1900, occurred once in 1 10 years, are currently likely to occur 2.8 times more often and become 

hotter than before. Such changes are significant for our daily lives and necessitate preparedness in the 

health care sector to protect public health. The effects of heat waves on health due to thermal stress 

and thermoregulation are well documented in existing research. The most prominent effects are in-

creases in cardiovascular, renal, respiratory and diabetes related hospitalization and mortality (WHO, 

2013). Research focusing on specific heat waves, such as the 2003 heatwave in Europe, shows that the 

death toll attributable to the heat wave exceeded 70,000 people (Robine et al., 2008).  

There is also evidence of adverse effects of heat waves in Finland despite its northerly location. 

The impacts of the 2003 heatwave in Europe and the 2010 heatwave in Russia were both experienced 

in Finland too, with 200 and 300 excess deaths reported, respectively (Kollanus and Lanki, 2013). 

Näyhä (2005) reported 800 excess deaths from the exceptionally warm summer of 1972. These figures 

are still small in relation to the annual mortality and in relation to cold effects in Finland (Näyhä, 2007). 

However, this is likely to change in the future. For example, Kim et al. (2018) project that the mean 

duration of a heat wave with mean temperatures above +20ºC is projected to grow in Finland from 6.1 

days per year up to 9.4 days.1 In addition, winter temperatures in Finland are projected to rise even 

faster than summer temperatures, shifting the temperature hazard towards the summer period (Ru-

osteenoja et al., 2016).  

In this article, our principal aim is to examine effects of temperature on human health in Finland, 

by first establishing the overall effect on the whole population and then on different sub-groups of the 

population and to identify groups most at risk of severe health consequences. We analyse the effects 

of temperature on health care use and mortality during summer months using rich individual level 

register data on the total population administered by the Finnish Institute for Health and Welfare and 

Statistics Finland.  

Studies on heat-related mortality already exist, including for the Nordic countries, but few utilise 

individual level data and fewer still also analyse hospital visits. We believe that including hospital visits 

helps us get a broader view of the health effects of heat, since, as we learn from our results, different 

diagnosis categories often emerge when looking at hospital visits and mortality. A large panel data set 

spanning 20 years gives statistical power and the high granularity of the data enables the use of accu-

rate daily measurements of weather variables in all municipalities, ruling out non-acute hospital visits 

and studying heterogeneity in heat effects between different groups of interest such as age groups, 

socioeconomic groups and groups with relevant pre-existing medical conditions by performing anal-

yses separately for these subgroups. We find mortality effects of similar magnitudes reported by pre-

vious literature, and elevated morbidity in terms of acute hospital visits due to heat exposure, respir-

atory illness, renal illness and diabetes. 

Due to the plausible growth in excess mortality and morbidity attributable to heat, studies on how 

to adequately prepare for rising temperatures and temperature shocks are increasingly important. 

Identifying vulnerable groups facing the largest risk is part of the preparedness of the health care sys-

tem. The elevated burden on health care systems and greater health care expenditure caused by these 

events justifies studying the heterogeneous effects of temperature among different groups of people, 

and the evidence can guide how to best allocate resources to mitigate these effects. The degree to which 

 

 

 
1 Prediction calculated using ERA-interim reanalysis data and RCP4.5 intermediate future climate scenario 
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individuals or households are able to adapt their behavior to heat exposure in the short term is a major 

determinant of mortality and morbidity. The ability is also likely to vary across population groups that 

present different vulnerabilities to begin with. Several studies report a significantly higher risk of hos-

pitalization and mortality for elderly people and infants, related to both heat waves and cold spells, 

compared to the prime-age group (Hajat et al., 2014, Knowlton, 2008, Nitschke et al., 2011, Sherbakov 

et al., 2018). Ageing population typical to the Nordic countries is thus another factor aggravating the 

effects of heat waves in Finland. 

 

2. Previous literature 

There exist multiple direct and indirect channels through which climate and climate change may affect 

human health. Examples range from effects on diseases, destructive weather events, droughts, and 

mental health. In this article, we are interested in the direct effects of changes in the daily outdoor 

temperature on the human physiological health. Several studies have examined this relationship also 

in Finland (Kollanus and Lanki, 2013; Kollanus et al., 2021; Ruuhela, 2018; Ruuhela et al., 2017). In 

general, researchers have not reached consensus on the precise causal relationships and the magni-

tude of the effects. The differences in statistical methods, local demographics, local health care systems 

and data availability could help to explain the differences. The threshold temperature at which health 

effects start to emerge also varies geographically, as mortality is at its lowest point often around the 

local most frequent temperature (Yin et al., 2019). We have concentrated on reviewing literature that 

attempts to find causal effects of temperature on health outcomes and literature focusing on developed 

countries.  

A common method in climate economics literature is to use panel data fixed effects models (e.g., 

Barreca (2012), Deschenes and Greenstone (2011), Mullins and White (2019)) that utilize broad data 

in both temporal and spatial dimension and compare random variation in temperatures to the varia-

tion of different outcomes of interest. When comparing time series data on weather variables and 

health outcomes, effects of many confounders are excluded by design, since most variables influencing 

health are not correlated with daily temperature. Natural exogeneity, or the randomness of short-term 

weather variation also means that validity 3 is not threatened by issues common to causal analyses 

such as reverse causality. There remain some potential confounders that are important to consider in 

analysing heat effects, such as humidity and air pollution. These variables could have a common tem-

poral pattern with temperature, and therefore confound the association with temperature and health.  

Fine particulate matter is a type of air pollution which has the biggest impact on human health. 

Fine particles and their health effects have been studied extensively. For example, Deryugina et al. 

(2019) found that similarly to temperature, fine particulate matter also disproportionately affects the 

elderly population. Carder et al. (2008) and Rainham and Smoyer-Tomic (2003) studied the interac-

tions between air pollution and temperature in Scotland and Toronto, respectively. They both showed 

that the evidence on the interaction between air pollution and temperature is inconclusive.  

Fine particle levels in Finland are commonly low, and the peaks are concentrated in the early 

spring when street dust levels are high (FMI, 2013). We restrict our empirical analysis in the period 

from May to September and, consequently, avoid the early spring period when the fine particle pollu-

tion peaks due to road dust. The panel fixed effects method used in this article, more thoroughly ex-

plained in the method section, will also mitigate possible confounding of pollution fluctuation between 

months by taking into account the level differences in outcomes between months. Ozone is another 

form of pollution which has the second highest impact on health after fine particles. The climate in 

Finland is not favourable for ozone formation and therefore the ozone levels in Finland are relatively 

low and very rarely exceed the healthy levels (FMI, 2021). For these reasons, we are confident in our 

choice to not include air pollution measures in our empirical models.  
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Humidity alongside high temperatures is known to affect human capability to withstand heat 

stress by hindering the body’s ability to evaporate heat energy. Barreca (2012) studied the effect of 

temperature and humidity on mortality rates in the U.S. in the years 1973-2002 and predicted that 

annual mortality rates would decrease in the cold and dry areas where the cold-season mortality ef-

fects dominate and increase in the hot and humid areas where the hot-season mortality dominates. 

Barreca’s main findings are that three additional days per month above 90ºF (approx. 32ºC) result in 

a 0.54 excess deaths per 100,000 inhabitants, and three additional days between the humidity levels 

16 and 18 g/kg causes an increase of 0.22 deaths per 100,000 inhabitants. Low humidity levels in in-

teraction with cold weather also increase mortality, plausibly due to easier transmission of influenza. 

He concluded that humidity alongside temperature is an important predictor of mortality in the U.S. 

and not including humidity generates biased results for the hot and humid regions due to the geo-

graphical and temporal differences in the relationship between temperature and humidity.  

There is evidence that temperature effects are delayed in time and health effects of temperature 

exposure accumulate (e.g., Gronlund et al. (2014)). Several studies have also reported that heat effects 

are rather immediate and persist 3-5 days, while cold effects persist for longer periods, up to 15 days 

(Gasparrini and Armstrong, 2010, Peterson et al., 2008, Yang et al., 2012). Therefore, daily level anal-

yses often contain some kind of lag structure for temperature. Common methods in the field of envi-

ronmental epidemiology are distributed lag models (DLM), notably the distributed lag nonlinear mod-

els (DLNM). Developed by Armstrong (2006), DLNM is adapted from DLM to include the estimation of 

nonlinear exposure effects. The method models the exposure-response association in two dimensions 

using separate functions for the lag dimension and the predictor itself. Gasparrini et al. (2012) studied 

temperature related cause-specific mortality in the UK between years 1993-2006 using the DLNM 

method. They found that all-cause mortality rises by 2.1 percent for each day with a temperature above 

the 93rd percentile of region-specific yearly temperatures. More than half of the measured mortality 

was attributable to cardiovascular and respiratory diseases.  

Another reason to include the lag-dimension is to take into account the so-called harvesting/dis-

placement effect common to temperature-mortality analyses. Harvesting takes place when there is a 

peak in the number of deaths as an immediate response to the exposure to high temperature, and this 

is compensated partially by a reduction in the number of deaths following the exposure. Harvesting 

effect consists mainly of individuals that are extremely vulnerable and whose deaths are preponed by 

any slight additional physical stress, in this case, heat. According to some studies, the initial mortality 

increases during heat waves are largely driven by the harvesting effect (Deschenes and Moretti, 2009), 

and are offset by a subsequent fall in mortality in the following periods. Therefore, harvesting needs 

to be considered when analyzing the causal effects of heat.  

Deschênes and Greenstone (2011) study the temperature-mortality relationship in the U.S. during 

years 1968-2002 by using a panel data fixed effects model. They divide the daily temperature 

measures into 10 bins, each with a width of 10ºF. Then, they explain the annual all-cause mortality 

using the number of days in each temperature bin during a year, including county and state-by-year 

fixed effects. They find that one additional day over 90ºF (approx. 32ºC) raises the annual age-adjusted 

all-cause mortality rate by 0.11 percent relative to a moderately warm day of 60ºF-70ºF which is a 

modal bin used as a reference. They also report elevated risk for the elderly population and infants, 

while no other heterogeneous effects were examined.  

There is evidence that some attributes, or combinations of them, that might lead to an elevated 

risk of heat vulnerability. One of the risk groups is elderly population living alone (Vandentorren et al., 

2006). Not having anybody to take care of oneself might cause symptoms of heat exposure to remain 

unattended or decrease the use of simple preventive measures such as staying hydrated or opening 

the windows. History of dementia-related illness is another potential contributor to the risk of heat-

related mortality and morbidity. For example, based on their results from Stockholm, Rocklov et al. 

(2014) argue that dementia might explain 5 a significant part of heat related mortality among the el-

derly population. 
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In addition, people with low incomes might be less able to adapt to high temperatures, such as 

investing in air conditioning or moving locations. However, there is surprisingly little evidence on ele-

vated heat vulnerability of groups in lower socioeconomic positions, especially from the developed 

countries. Gouveia et al. (2003) found only little evidence that the socioeconomic position of individu-

als modifies the temperature-mortality relationship in Brazil (risk is elevated only among the most 

deprived groups in Sao Paulo). A city-level study from the U.S. showed that a 10 percent increase in 

the poverty level modified the temperature-mortality association (on the warm side of the tempera-

ture distribution) by 4.3 percent (Curriero et al., 2002).  

Heat affects health through different physiological mechanisms and the magnitude of the effects is 

likely to vary across disease groups. Moreover, people with certain pre-existing conditions might be 

more susceptible to heat-related health effects, while healthy individuals are less likely to be affected. 

According to previous studies, hospital visits related to asthma are elevated during heat waves (Soneja 

et al., 2016), and people who have been diagnosed with asthma are more susceptible to morbidity 

during heat waves (Khalaj et al., 2010). Diabetes has also been reported to decrease the ability to en-

dure heat stress and elevate the risk of negative health consequences in this population group (e.g., 

Vallianou et al. (2020), Xu et al. (2019)). Some studies have also shown that temperature affects cardi-

ovascular health outcomes and causes elevated risk of morbidity and mortality among individuals hav-

ing pre-existing cardiovascular illness (Semenza et al., 1996).  

 

3. Data and research design 

3.1 Data 

We use register data on the use of specialized health care (HILMO) administered by the Finnish Insti-

tute for Health and Welfare, data on causes of death and data on individuals’ socioeconomic status 

(FOLK) administered by Statistics Finland, and daily weather data administered by the Finnish Mete-

orological Institute. Individual level data are merged by using an encrypted ID code unique to each 

individual. Health outcomes are connected to the individual’s municipality of residence and the local 

weather. The data are then aggregated to the municipality-day and municipality-month level to form 

a panel dataset to be used in the empirical analyses.  

The data span from 1998 to 2017 but only the summer months from May to September are in-

cluded. This is done to keep the emphasis on heat effects, and it allows us to disregard some of the 

stronger seasonality in 6 the outcomes taking place between seasons, such as the overall decline of 

morbidity in the summer compared to the winter. As stated earlier, this also mitigates the possible 

confounding effects of road dust, a major component of harmful air pollution in the early spring. Since 

municipality borders change across time due to municipal mergers, we fix the municipality areas to 

the ones of 2015 throughout the data. Some spatial accuracy is lost by doing this, since some weather 

data are disregarded and replaced with measurements from the parent municipality. 

 

3.2 Outcome variables: hospital visits and mortality 

All health care services in Finland are divided into primary health care and specialized health care. The 

health care data used in this article consist of public sector specialized care visits due to better data 

availability and comparability. Our data cover around half of all the outpatient visits in the public sec-

tor as there were 10.8 million outpatient visits in the specialized care compared to 9.9 million outpa-

tient visits in the primary health care during the year 2019 (Kyrolä and Järvelin, 2020; Puroharju et 

al., 2020). The data include primary symptom diagnosis codes corresponding to the International Clas-

sification of Diseases 10th edition (ICD-10) to distinguish between diagnosis groups and a variable to 

distinguish between acute and other hospital visits. 
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We are interested in two outcome variables: hospital visits and mortality. As strong long- and 

shortterm seasonality can be observed for all hospital visits due to holiday seasons and the fact that 

planned visits concentrate on weekdays, we include only acute visits that present less seasonality. 

Longer term seasonality is taken into account also by the use of fixed effects that restrict only the inter-

month variation into the analysis.  

The hospital visits are analysed cause-specifically in diagnoses which are selected based on existing 

evidence (Bogdanovic et al., 2013; Kovats et al., 2004). The following ICD-10 diagnoses are chosen for 

the analysis: all cardiovascular diseases (I00-I99), respiratory diseases (I60-I69), selected renal dis-

eases (N00-N39), dementia (F00-F03), psychiatric disorders (F04-F99) and diabetes related diagnoses 

(E10-E14). Respiratory illness with codes J60-J79 is excluded due to it being caused by inhalation of 

inorganic substances, inorganic dust or chemicals. In addition, hyperthermia (T67) and exposure to 

excessive natural heat (X30), are included and classified under the category ”heat exposure”. Hospital 

visits are also restricted to acute visits only. Examining acute visits results in a firmer exposure-re-

sponse link since acute visits are more likely to be directly connected with the weather outcomes of 

the same day.  

Mortality and morbidity analysis is conducted first for all causes, followed by cause-specific analy-

sis. The heat-mortality mechanism is not easily visible in the cause of death data. For example, deaths 

are very rarely registered as being directly caused by heat. In addition, the data contain a primary 

cause of death, an immediate cause of death and 4 contributing causes of death. We determine the 

cause-specific 7 deaths in our data by using both the primary and immediate causes of death. We con-

sider separately two of the most common causes of death: cardiovascular causes (I00-I99) and respir-

atory causes (I60-I69). All outcomes are calculated per 100,000 population, using yearly population 

estimates calculated from the FOLK data. Summary statistics on the average monthly mortality and 

hospital visit counts for the study period are presented in tables 1 and 2. The definitions of vulnerable 

groups are detailed in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Average monthly mortality rates per 100,000 population (May-September of 1998-
2017) 

 Age group 

 0-64 65-74 75-84 85 and 

above 

Whole population     

  All cause mortality 18.6 137.1 366.1 1078.2 

    Respiratory 1.7 21.8 79.2 265.3 

    Cardiovascular  4.9 53.7 167.6 553.9 

Low-income elderly population     

  All cause mortality . . 916.0 1622.6 

Elderly population living alone     

  All cause mortality . . 294.0 797.8 

Elderly with pre-ex. cardiovascular conditions     

  All cause mortality . . 539.2 1187.4 

Elderly with pre-ex. asthma     

  All cause mortality . . 434.3 903.6 

Elderly with pre-ex. Alzheimer or dementia     

  All cause mortality . . 546.9 868.0 

Elderly with pre-ex. diabetes     

  All cause mortality . . 710.0 1096.3 

Elderly with pre-ex. mental or behavioral illness     

  All cause mortality . . 436.6 747.7 
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3.3 Demographic and socioeconomic data  

Annual data describing individuals’ basic information is provided by Statistics Finland. Variables se-

lected for use are the municipality number for the place of residence, year, unique personal identifier, 

age, sex, disposable income, living arrangement and a family identifier code. Since the data don’t in-

clude observations for individuals’ year of death, this information is extrapolated from the previous 

year in case the individual dies. In our analyses, hospital visits and mortality are analysed separately 

for four age groups 0-64, 65-74, 75-84, and 85+.  

A low-income indicator is based on equivalised family disposable income, which is a measure tak-

ing into account paid taxes and received social transfers. The OECD modified equivalence scale (OECD, 

2009) was used to take into account the size and composition of the household: the sum of the family 

disposable income is divided by a weighted sum of family members. The first adult of the household is 

weighted by 1, all following adults by 0.5 and children under 14 by 0.3. Each year, the first quintile of 

the income distribution (the poorest 20 percent of the population) is defined as having low income. 

We have also created a dummy variable which takes on the value 1 if the individual is living alone, 

based on the living arrangement variable.  

Data on hospital visits and ICD-10 codes are also used to create indicators on pre-existing medical 

conditions for each individual. Pre-existing conditions are identified based on an indicator variable 

that has a value of 1 if an individual has had any acute or non-acute hospital visits during the past 5 

years in different diagnosis categories. In these analyses, first 5 years of the data are therefore omitted. 

  Age group  

 0-64 65-74 75-84 85 and 

above 

Whole population     

  All acute hospital visits 1188.8 2413.1 4438.0 6842.5 

    Heat exposure 2.75 15.6 37.5 76.3 

    Respiratory diagnoses 84.4 198.9 395.4 611.1 

    Cardiovascular diagnoses 67.8 516.1 1069.8 1718.7 

    Diabetes diagnoses 13.4 26.7 45.0 51.5 

    Renal diagnoses 25.6 87.3 230.5 507.9 

    Psychiatric diagnoses 138.3 109.7 154.4 247.5 

    Alzheimer & dementia diagnoses 0.56 19.7 107.7 242.0 

Low-income elderly population     

  All cause mortality . . 6201.9 8440.1 

Elderly population living alone     

  All cause mortality .  .  4474.4 7122.4 

Elderly with pre-ex. cardiovascular conditions     

  All acute hospital visits . . 10960 14092 

Elderly with pre-ex. asthma     

  All acute hospital visits . . 13327 17958 

Elderly with pre-ex. Alzheimer or dementia     

  All acute hospital visits . . 11508 11782 

Elderly with pre-ex. diabetes     

  All acute hospital visits . . 14655 15616 

Elderly with pre-ex. mental or behavioral illness     

  All acute hospital visits . . 13040 14607 

Table 2: Average monthly acute hospital visits per 100,000 population (May-September of 1998-2017) 
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The diagnoses of interest in determining pre-existing conditions are diabetes, cardiovascular disease, 

asthma, dementia and Alzheimer’s disease and psychiatric diagnoses. 

 

 

3.4 Independent variables: weather data  

Weather data are obtained from the Finnish Meteorological Institute (FMI) and the variables selected 

for use are the municipality number, date, daily mean temperature and relative humidity. To focus on 

the effects of extreme heat that is expected to increase due to ongoing climate change, we concentrate 

on the months from May to September in this article, excluding albeit important health effects of cold 

in Finland.  

We have chosen to use daily mean outdoor temperature as the main predictor in the models. The 

temperature for each municipality in the dataset is calculated based on spatially averaging from the 

FMI’s 10km x 10km gridded dataset. Compared to several studies in which temperature is calculated 

by averaging between the daily minimum and maximum temperatures, FMI measures are more accu-

rate and less prone to measurement error, as daily mean temperature is calculated by averaging from 

up to 8 daily measures. This is especially important in Finland where there is large variation in the day 

length.  

The relationship between temperature and health outcomes is often found to be U-shaped, where 

negative health outcomes occur at both ends of the yearly temperature distribution. Drawing a linear 

relationship between continuous temperature and health outcomes is likely to result in a decrease in 

negative health outcomes given a rise in temperature, since most of the daily average temperatures in 

Finland are below 14ºC, or what the minimum mortality temperature (MMT) in Finland is estimated 

to be (Ruuhela, 2018), and since the mortality effects of cold dominate in Finland (Näyhä, 2007). There-

fore, it is important to specifically identify effects of extreme heat and to take into account the nonlin-

ear effects of temperature.  

Independent variable binning is a tool to easily model nonlinear effects and is used in several cli-

mate economics papers studying the temperature-morbidity effect (Barreca, 2012, Mullins and White, 

2019, Otrachshenko et al., 2017). Binning independent variables into discrete categories reduces var-

iation but, in turn, parameters are estimated separately for each category, enabling the modelling of 

nonlinear effects. The downside of the reduction in variation is smaller the larger the data is. Afore-

mentioned studies use several decades of daily observations, and our article uses 20 years of daily 

measures restricted to five of the warmest months. Upsides of data binning instead of, for example, 

fitting a specific polynomial function into the data is that no assumptions of 10 the functional form 

relationship between the variables are needed. The association is determined freely by the data.  

Following the example of Barreca (2012), Mullins and White (2019), Otrachshenko et al. (2017), 

we categorize temperature into 10 bins in our analyses. Figure 1 shows these bins and the average 

distribution of days per month in each bin in the sample. The temperature is truncated so that the days 

in the lowest bin form about 0.5 percent of the municipality-days in the sample and the highest bin 

about 0.1 percent. The small proportion of days below 1ºC and over 25ºC is due to the varying climate 

in the whole of Finland, as the warmest days are mostly seen in the south and the coldest days only in 

the north. Figure 2 illustrates the spatial distribution of the number of days in the highest two temper-

ature bins.  

The literature is inconclusive on which measurement best proxies the heat stress felt by humans 

and thus, is the most appropriate in analyzing the health effects. Barnett et al. (2010) assess the quality 

between measurements such as mean, minimum and maximum temperature with and without humid-

ity, apparent temperature and Humidex-index, which is a “real feel” type of measurement which com-

bines temperature with dew point measures into a scale. They study mortality effects of weather using 

a large dataset from 107 cities in the U.S. They conclude that different measures might give slightly 
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different results, but there are no clear winners in terms of measurement accuracy. They suggest using 

the best available data when conducting research on the topic.  

Ruuhela et al. (2017) use physiologically equivalent temperature (PET) in their study of extreme 

temperatures and mortality. PET is calculated by using outdoor air temperature, relative humidity, 

wind speed and solar radiation. One of the conclusions of the study is that using daily average temper-

ature as a predictor is in most cases adequate and the inclusion of PET is not particularly beneficial. 

Since high levels of humidity are also seen in Finland during extreme weather events, and humidity is 

used as a predictor in several studies (Barreca et al., 2015, Barreca, 2012, Mullins and White, 2019), 

we test how humidity affects our main results. The measures of relative humidity, which contain a 

component of temperature, are converted into specific humidity (g/m3) using a conventional meteor-

ological formula, to avoid multicollinearity in further analysis. 
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Figure 1: Average distribution of days per month in each temperature category, 1998-2017 

Note: This figure represents the historical average of the monthly distribution of daily mean tempera-
ture days in all 311 municipalities in the sample, during the months May to September and years 1998-
2017. 
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3.5 Empirical methods  

After aggregating the data to the municipality-month level, our empirical model is formalized as fol-

lows:  

𝑌(𝑖,𝑚,𝑦) = ∑ 𝛽𝐵  𝑇𝐵(𝑖,𝑚,𝑦)
+ 𝛼(𝑖,𝑦)

𝐵

+ 𝛾(𝑚) + 𝜀(𝑖,𝑚,𝑦) 

where Y is the monthly sum of hospital visits or mortality per 100,000 population in municipality i, 

month m and year y. Y is explained by the sum of days per month in each of 10 different temperature 

bins T(B). Temperature bin 5, which corresponds to the daily mean temperatures between 13-16ºC, is 

omitted as a reference category. Municipality-year level fixed effects α(i, y) take into account the dif-

ferences in trends in the outcome variables between different municipalities and between different 

years, that could be caused for example by differing trends in the population age distribution, health, 

health care quality, or any other differences in trends. Month fixed effects γ(m) take into account sea-

sonality in the outcome variables common to all municipalities, for example differences in health care 

use between months. Robust standard errors are clustered at the municipality level in all the regres-

sions due to the plausible correlations between standard errors within municipalities.   

(a) Number of days between 22-25°C (b) Number of days exceeding 25°C 

Figure 2: Spatial distribution of the number of days in the two highest temperature bins during the 
whole 

Note: This figure represents the spatial distribution of days in the highest daily mean temperature cat-
egories in all 311 municipalities in the sample, including months May to September and years 1998-
2017. The warmest municipalities in this figure have a day in the highest temperature category almost 
once per year on average, and about 5 days per year in the range 22-25ºC on average. This figure is 
constructed by the authors using the QGIS software. 
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Regressions are weighted using the yearly population of each municipality. Using regression 

weights mitigates the comparability issues between areas that are small and densely populated and 

areas that are large and sparsely populated by allowing areas to impact the results in relation to their 

population size (Dell et al., 2014). Adding weights is equivalent to multiplying each five terms in the 

previously formalized equation by the square root of the population size in municipality i (Dupraz, 

2013). The OLS regressions are run in Stata by using the reghdfe command, which allows the easy use 

of high-dimensional fixed effects (Correia, 2017). We conduct the analysis also by using Poisson re-

gression methods, firstly due to the widespread use of this method in earlier studies (Barnett et al., 

2010, Curriero et al., 2002, Gasparrini et al., 2015, Gouveia et al., 2003) and secondly due to a concern 

that smaller municipalities might have monthly outcome counts that are Poisson distributed instead 

of normally distributed. The baseline results obtained using the Poisson fixed effects regressions are 

available in the appendix.  

Lastly, we conduct a municipality-day level analysis which does not account for harvesting and 

lagged effects of temperature, in order to compare the two approaches. This approach is formalized as 

follows: 

𝑌(𝑖,𝑑,𝑚,𝑦) = 𝛽𝐵  𝑇𝐵(𝑖,𝑑,𝑚,𝑦)
+ 𝛼(𝑖,𝑦) + 𝛾(𝑚) + 𝜀(𝑖,𝑑,𝑚,𝑦) 

 

In this case, Y is the sum of hospital visits or mortality per 100,000 population in municipality i, for day 

d, month m and year y. Y is explained by the realized category of the daily mean temperature T(B) each 

day. We apply the same set of fixed effects in this specification.  

 

4. Results  

4.1 Main results on all-cause hospital visits and mortality 

After aggregating the data on the municipality-month level, we estimate the main effects on all 

acute hospital visits and on the all-cause mortality for the age groups 0-64, 65-74, 75-84, and 85+ (Ta-

bles 3 and 4). We can see that the number of days with high mean temperatures is significant and 

consistently positive in determining both monthly hospital visits and mortality. As expected, the effect 

grows stronger in older age categories and in the highest temperature bins, suggesting nonlinearity in 

the relationship. In Table 3 on the acute hospital visits for all causes, the point estimates imply on 

average a relative 14 increase of 1.4% (16.8 more visits per 100,000 population) for the age group 0-

64 and 0.9% increase (63.8 more visits per 100,000 population) for the age group 85+ for an additional 

day per month in the highest temperature bin. We also see that cold days are even more strongly as-

sociated with hospital visits in the oldest age group and in the second age group.  

In the case of mortality (Table 4), the point estimates indicate up to 2.2% increase in mortality 

(23.2 excess deaths per 100,000 population) in the age group 85+, for an additional day per month in 

the highest temperature bin. In contrast to the results on acute hospital visits, we do not find an in-

crease in mortality in the coldest days. All marginal effects, in percentages, are visualised in Figure 3. 
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Table 3: Effect of an additional day in specific temperature bins on monthly acute hospital visits per 
100,000 population, compared to the reference category (13-16°) 

 Age group 

 <65 65-74 75-84 >84 

Temp <1°C 15.39* 31.67** 15.46 84.57***  
(8.356) (14.50) (18.78) (30.94) 

 
    

Temp 1-4°C 3.514* 5.119 13.58** -21.36**  
(1.961) (3.359) (5.668) (10.05) 

 
    

Temp 4-7°C 6.296*** 8.546*** 11.09*** -5.196  
(2.004) (3.248) (4.118) (6.253) 

 
    

Temp 7-10°C -0.457 -0.766 1.334 -11.24***  
(0.912) (1.489) (2.246) (4.267) 

 
    

Temp 10-13°C 2.898*** 3.251** 5.077** -5.378  
(0.762) (1.337) (2.028) (3.932) 

 
    

Temp 16-19°C 0.0546 -0.549 -0.573 0.302  
(0.800) (1.344) (2.138) (3.545) 

 
    

Temp 19-22°C 3.605*** 2.590* 2.994 6.423  
(0.764) (1.552) (2.236) (4.485) 

 
    

Temp 22-25°C 4.394*** 4.312 5.037 15.40  
(1.427) (3.116) (5.359) (9.678) 

 
    

Temp >25°C 16.83*** 13.87 36.11 63.84**  
(3.735) (12.16) (28.33) (32.42) 

N 31100 31100 31100 31100 
Mean of Dep. Var. 1188.3 2406.8 4425.6 6955.2 

     

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 4: Effect of an additional day in specific temperature bins on monthly all cause mortality per 
100,000 population, compared to the reference bin (13-16°C) 

 Age group 

 <65 65-74 75-84 >84 

Temp <1°C 0.0500 0.110 -3.368* 6.814 

 (0.126) (0.964) (1.914) (5.157) 
     
Temp 1-4°C 0.0234 0.0672 2.470** 3.537 

 (0.0729) (0.507) (1.027) (2.911) 
     

Temp 4-7°C -0.0128 0.219 -0.147 -3.507* 
 (0.0408) (0.344) (0.609) (1.990) 
     

Temp 7-10°C 0.0302 0.0273 1.006** 3.236** 
 (0.0238) (0.212) (0.418) (1.292) 

     
Temp 10-13°C -0.0445* 0.259 0.381 -1.431 

 (0.0244) (0.201) (0.399) (1.197) 
     
Temp 16-19°C -0.0322 0.181 0.340 0.736 

 (0.0239) (0.190) (0.448) (1.212) 
     

Temp 19-22°C 0.00326 0.380* 1.103** 2.039 
 (0.0264) (0.222) (0.478) (1.304) 

     
Temp 22-25°C 0.0125 0.413 1.367 3.656 
 (0.0715) (0.529) (1.137) (2.555) 

     
Temp >25°C 0.223 0.399 6.012 23.18** 

 (0.208) (1.580) (3.914) (9.126) 

N 31100 31100 31100 31100 
Mean of Dep. Var. 18.57 134.8 361.6 1065.3 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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a) All acute hospital visits 

b) All-cause mortality 

Figure 3: Marginal effect of an additional day per month in a specific temperature category on the 
monthly 
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4.2 Cause-specific results  

Next, we differentiate acute hospital visits and mortality cause-specifically in Figures 4 and 5. Figure 4 

shows the cause-specific visits for all people above 75 years old. Hospital visits with heat exposure 

diagnoses (a) 17 are unsurprisingly heavily impacted with point estimates implying close to 40% in-

crease in acute hospital visits for an additional day per month in the highest temperature bin, but in 

absolute numbers these visits are still rare. Other drivers behind the increase in the overall number of 

hospital visits seem to be visits with respiratory diagnoses and renal diagnoses (b) and diabetes, de-

mentia and psychiatric diagnoses (c). However, according to these point estimates, visits with cardio-

vascular diagnoses are not elevated during heat waves (b). 

On the other hand, cardiovascular causes of death seem to be the largest contributor to the all-

cause mortality in Figure 5, with the point estimates implying effects of around 2-3% for an additional 

day in the highest temperature category. Also, deaths due to respiratory diseases are affected more 

than the overall mortality. When looking at the cause specific measures, it is helpful to refer to the 

Tables 1 and 2 in order to see the overall prevalence of each cause within different population groups. 
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Figure 4: Effect of an additional day per month in specific temperature bins on monthly acute hospi-
tal visits, by primary cause. The sample is restricted to the elderly population (75 and older). Note 

that the Y-axes vary between the plots. 
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4.3 Risk groups  

We move on to analyse the temperature-morbidity relationship in various population subgroups with 

plausibly elevated risk of negative health consequences. We start by looking at acute hospital visits 

and all-cause mortality in the elderly low-income population as well as in the elderly population living 

alone. By looking back at Table 1, we can observe that mortality among the low-income people is sig-

nificantly higher compared to the whole population, but mortality among people living alone is slightly 

lower compared to the whole population in the three oldest age groups. We see from Figure 6 (a) that 

the effect of the highest temperature on acute hospital visits is slightly larger for both of these risk 

groups with point estimates suggesting around one percent increase, while confidence intervals are 

also wide. As for mortality (b), the effect is the strongest among the low-income elderly population, 

with an increase in mortality of more than two percent. However, against our expectation, the effect is 

smaller among those living alone. 

As another important risk factor, we look at all acute hospital visits (Figure 7) and all-cause mor-

tality (Figure 8) for individuals with pre-existing medical conditions retrieved from the health care use 

history. There are remarkably few strong effects among these risk groups. However, among those with 

dementia or Alzheimer, the effect on acute hospital visits is much stronger than among all individuals 

above 75 years old (Figure 7b). As for mortality, the point estimates are slightly higher among those 

with cardiovascular disease and diabetes (Figure 8a) as well as dementia or Alzheimer and psychiatric 

disorder (Figure 8b). However, there is some uncertainty regarding these estimates due to wide con-

fidence intervals. 

 

 

 

 

 

 

 

 

Figure 5: Effect of an additional day in specific temperature bins on monthly mortality per 100,000 
population, by either primary or immediate cause. The sample is restricted to the elderly population 

(75 and older). 
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a) Acute hospital visits 

 

 

 

 

 

 

 

 

b) All-cause mortality 

Figure 6: Effect of an additional day per month in specific temperature bins on monthly outcomes, by 
risk group. The sample is restricted to the elderly population (75 and older). Note that the Y-axes 

vary between the plots. 
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Figure 7: Effect of an additional day per month in specific temperature bins on monthly acute hospi-
tal visits, by risk group. Note that the Y-axes vary between the plots. 
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4.4 Municipality-day level analysis  

 

Next, we compare the main results on the municipality-month level to results on the municipality-day 

level to better understand the potential harvesting effect (Tables 5 and 6). As expected, the point esti-

mates of the daily level model imply significantly higher effects than the municipality-month level 

model, up to 45.2 more hospital visits per 100,000 population (an increase of 10.8%) in the age group 

85+ for a daily average temperature in the highest category (Table 5). In the case of mortality, the point 

estimates imply up to 11.2 more deaths per 100,000 population (an increase of 32%) in the oldest age 

group for a daily average temperature in the highest category (Table 6). It is highly plausible that these 

estimates are inflated due to harvesting, as discussed in Deschenes and Moretti (2009). We believe 

Figure 8: Effect of an additional day per month in specific temperature bins on monthly all-cause 
mortality, by risk group. Note that the Y-axes vary between the plots. 
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that using the municipality-month level model is more appropriate for estimating the effects of heat as 

it reduces the need for considering lagged effects and the harvesting effect. 

 

 
Table 5: Effect of temperature on daily acute hospital visits per 100,000 population, compared to the 

reference temperature category (13-16°C) 

 Age group 

 <65 65-74 75-84 >84 

Temp <1°C 0.509 0.567 -2.179 1.481 
 (0.958) (2.068) (3.003) (5.269) 
     

Temp 1-4°C 0.426 0.109 -0.555 -4.276* 
 (0.338) (0.754) (1.368) (2.191) 

     
Temp 4-7°C 0.324 -0.226 -0.241 -0.687 
 (0.258) (0.443) (0.806) (1.531) 

     
Temp 7-10°C 0.603*** -0.271 -0.311 -2.290* 

 (0.189) (0.354) (0.613) (1.283) 
     
Temp 10-13°C 0.313** 0.368 1.078** 0.0383 
 (0.135) (0.276) (0.498) (0.853) 
     

Temp 16-19°C 0.177 0.0867 1.368*** 4.912*** 
 (0.177) (0.289) (0.526) (1.040) 

     
Temp 19-22°C 1.454*** 0.932** 3.169*** 10.01*** 
 (0.188) (0.438) (0.615) (1.700) 

     
Temp 22-25°C 1.885*** 2.464*** 6.993*** 17.21*** 

 (0.273) (0.807) (1.264) (3.016) 
     

Temp >25°C 4.280*** 9.551*** 15.91*** 34.41*** 
 (0.696) (2.545) (4.431) (8.605) 

N 951660 951660 951660 951660 
Mean of Dep. Var. 38.83 78.65 144.6 227.3 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 6: Effect of temperature on daily all-cause mortality per 100,000 population, compared to the 
reference temperature category (13-16°C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 Age group 

 <65 65-74 75-84 >84 

Temp <1°C 0.0464 0.0843 -0.397 1.773 

 (0.0418) (0.271) (0.608) (1.885) 
     

Temp 1-4°C 0.0046 0.143 0.0765 0.630 
 (0.0168) (0.132) (0.251) (0.773) 

     
Temp 4-7°C -0.0006 0.0926 0.215 -0.308 
 (0.0102) (0.0731) (0.173) (0.551) 

     
Temp 7-10°C -0.0087 -0.0311 -0.0887 -0.0834 

 (0.00785) (0.0639) (0.135) (0.388) 
     

Temp 10-13°C -0.0138** 0.0626 -0.0769 -0.235 
 (0.00603) (0.0478) (0.106) (0.330) 
     

Temp 16-19°C 0.0185*** 0.103** 0.0576 0.697** 
 (0.00641) (0.0460) (0.124) (0.281) 

     
Temp 19-22°C 0.0226*** 0.244*** 0.600*** 2.695*** 
 (0.00763) (0.0656) (0.148) (0.519) 

     
Temp 22-25°C 0.0501** 0.261* 1.931*** 5.048*** 

 (0.0200) (0.140) (0.317) (0.705) 
     
Temp >25°C 0.186*** 0.0116 3.608*** 11.15*** 
 (0.0475) (0.404) (0.828) (2.728) 

N 951660 951660 951660 951660 
Mean of Dep. Var. 0.607 4.404 11.82 34.81 
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4.5 Robustness checks  

We also present our main results by adding two effect modifiers, specific humidity and an interaction 

of high specific humidity and high temperature (above 13g/kg and above 22°C). First, in Figure 9 we 

illustrate the relationship between daily specific humidity and daily average temperature in the whole 

sample period. We see that the relationship is highly linear and higher specific humidity is only wit-

nessed during warmer weather. Second, our results in table 7 show that humidity and the humidity-

heat interaction play a significant role in determining the number of acute hospital visits. It is espe-

cially the humid hot days that affect hospital visits. However, when looking at the effects on all-cause 

mortality (Table 8), we see that humidity and the humidity-heat interaction are not statistically signif-

icant and do not alter the main results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Humidity-temperature relationship in Finland during months May-September in 1998-
2017 
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Table 7: Effect of an additional day in different weather-outcome categories on monthly acute hospi-
tal visits per 100,000 population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 Model 1 Model 2 Model 3 

Temp <1°C 18.83* 3.305 3.602 
 (9.894) (9.928) (9.888) 

Temp 1-4°C 3.601* -3.392 -3.105 
 (2.007) (2.530) (2.559) 

Temp 4-7°C 6.559*** 4.749** 4.867** 
 (2.120) (2.209) (2.210) 

Temp 7-10°C -0.722 -1.208 -1.164 
 (0.905) (0.909) (0.894) 

Temp 10-13°C 2.790*** 2.842*** 2.859*** 
 (0.741) (0.811) (0.820) 

Temp 16-19°C -0.0900 -0.133 0.0408 
 (0.814) (0.976) (0.939) 

Temp 19-22°C 3.499*** 3.907*** 4.955*** 
 (0.792) (1.020) (1.058) 

Temp 22-25°C 4.596*** 4.082* -5.819 
 (1.485) (2.313) (4.973) 

Temp >25°C 18.68*** 15.09*** -3.120 
 (3.997) (4.086) (8.374) 

Humidity <4g/kg  12.09*** 11.89*** 
  (3.464) (3.439) 

Humidity 4-7g/kg  0.727 0.762 
  (0.864) (0.857) 

Humidity 7-10g/kg  -1.750* -1.729* 
  (0.929) (0.927) 

Humidity 13-16g/kg  -2.104 -4.781*** 
  (1.638) (1.418) 

Humidity >16g/kg  9.356** -1.050 
  (3.637) (3.611) 

Humidity >13g/kg    18.75*** 
& Temp >22°C   (6.678) 
Temperature Yes Yes Yes 
Humidity No Yes Yes 
Interaction No No Yes 
N 31100 31100 31100 
Mean of Dep. Var. 1631.0 1631.0 1631.0 
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Table 8: Effect of an additional day in different weather-outcome categories on monthly all-cause 
mortality per 100,000 population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

 Model 1 Model 2 Model 3 

Temp <1°C 0.002 0.043 0.040 
 (0.201) (0.245) (0.245) 

Temp 1-4°C 0.241* 0.253* 0.251* 
 (0.125) (0.151) (0.151) 

Temp 4-7°C -0.086 -0.099 -0.100 
 (0.068) (0.087) (0.088) 

Temp 7-10°C 0.152*** 0.129** 0.129** 
 (0.050) (0.060) -0.06 

Temp 10-13°C -0.033 -0.059 -0.059 
 (0.042) (0.047) (0.047) 

Temp 16-19°C 0.035 0.061 0.059 
 (0.047) (0.050) (0.049) 

Temp 19-22°C 0.153*** 0.212*** 0.202*** 
 (0.052) (0.075) (0.077) 

Temp 22-25°C 0.215** 0.305** 0.401* 
 (0.102) (0.124) (0.214) 

Temp >25°C 1.112*** 1.310*** 1.488** 
 (0.414) (0.436) (0.574) 

Humidity <4g/kg  0.060 0.062 
  (0.148) (0.148) 

Humidity 4-7g/kg  0.072 0.071 
  (0.065) (0.065) 

Humidity 7-10g/kg  0.096* 0.095* 

  (0.051) (0.051) 

Humidity 13-16g/kg  -0.058 -0.031 
  (0.102) (0.111) 

Humidity >16g/kg  -0.123 -0.021 
  (0.367) (0.417) 

Humidity >13g/kg    -0.183 
& Temp >22°C   (0.342) 
Temperature Yes Yes Yes 
Humidity No Yes Yes 
Interaction No No Yes 
N 31100 31100 31100 
Mean of Dep. Var. 1631.0 1631.0 1631.0 
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5. Conclusions  

Deadly heat waves have alerted governments and public health officials to react to the negative health 

consequences of global warming (Martinez et al., 2019). Climate change has increased the likelihood 

of heat waves also in Finland where the population is used to mild temperatures and where cold tem-

peratures have previously been identified as a larger risk for public health (Näyhä, 2007). The change 

necessitates new research to identify vulnerable groups and to adapt the health care sector to protect 

public health and mitigate adverse consequences.   

In this article, we set out to examine the effects of high temperatures in Finland using unique reg-

ister data on the total population. Employing a panel fixed effects method, we analysed the effects of 

temperature during summer months on acute hospital visits and mortality for all causes and cause-

specifically at the municipal-month level and examined the effects in various subgroups of the popula-

tion. Our contribution lies especially in studying hospital visits and mortality together as well as look-

ing at the heterogeneous effects to identify vulnerable groups. We add to the existing literature on the 

heat effects in Finland with an important perspective on health care use in addition to the extreme 

cases of mortality. We also introduce a model widely used in climate economics but, at least to our 

knowledge, not yet applied to Finland or other Nordic countries.  

Our results show that the highest temperatures were, as expected, associated with an increase in 

the number of hospital visits and excess deaths. Relative increases in acute hospital visits but not in 

mortality were visible for younger age groups too, perhaps indicating that working age individuals are 

not able to protect against heat when working or indicating vulnerability among young children. In 

addition, it suggests that the significance of heat effects is underestimated among working age popu-

lation. Nevertheless, our main effort was to study effects in more detail among the elderly population.  

The effects were strongest among the oldest population group as demonstrated by earlier litera-

ture (Deschenes and Greenstone, 2011; Deschenes and Moretti, 2009; Kollanus et al., 2021). However, 

against our expectations, we were mostly unable to detect an elevated risk among older people with 

pre-existing medical conditions, which could indicate that individuals in these groups are mostly 

aware of the health risks connected to heat waves and are prepared to protect themselves. Individuals 

with Alzheimer / dementia were one of the groups among which a higher effect on hospitalization and 

mortality was found during heat waves. This result is in line with previous literature (e.g., Rocklöv et 

al. (2014)). In addition, elderly people in the lowest income quintile were affected more strongly in 

terms of both mortality and acute hospital visits than 29 all persons above the age 75. This could be 

related to the overall worse health among low-income people or weaker opportunities to adapt to heat 

(e.g., access to cooled areas). Effect on acute visits was slightly higher also for those living alone com-

pared to that of the the whole elderly population, but in terms of mortality the effect was lower.  

Our results are similar in magnitude to the results of studies utilizing similar methods, to the extent 

the analyses are comparable. For example, Barreca (2012) estimates that three additional days above 

90ºF (approx. 32ºC) result in 0.54 excess deaths per month per 100,000 population in the U.S., or a 

percentage effect of 0.78% when reflected against the mean mortality rate, although he controls for 

humidity and uses a bimonthly average of the number of temperature-days. Deschenes and Greenstone 

(2011) estimate that an additional day above 32ºC per year increases annual all-cause mortality by 

0.11% in the U.S. Otrachshenko et al. (2017) estimate a mortality effect of 0.06% for an additional day 

per year above 25ºC in Russia. Our most comparable result for the all-cause mortality effect for the 

whole population (Table 8) ranges from 0.3% for an additional day in the range 22-25°C, and 1.5% for 

days above 25ºC.  

In relation to other studies from Finland, our results on mortality are smaller in magnitude. For 

example, Ruuhela et al. (2018) find an effect on mortality of 16% at a daily mean temperature of 24ºC, 

using the DLNM method and daily level analysis. Kollanus et al. (2021) define heatwave as a period in 

which the daily average temperature exceeds the 90th percentile of that from May to August during 

the years 2000-2014 (about 20ºC). They find average mortality effects of 6.7% in the age group 65-74 

and 12.8% during all heat wave days in the age group 75 or older. One reason for the differing results 
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can be that these studies are based on a daily level analysis and do not explicitly take into account the 

harvesting effect. The results from our daily level analysis (Table 6) results are closer to these esti-

mates, implying around 30% excess deaths depending on age groups, for a day with an average tem-

perature above 25ºC. However, as we argue above, we believe that these results are overestimated due 

to the harvesting effect.  

In terms of hospital visits, White (2017) find that for a day above 80ºF (26.7°C), emergency de-

partment visits rise by about 3.5% on the same day and 5.1% on total. Studies on effects on hospitali-

zation in Finland are more difficult to find. Sohail et al. (2020) study the effect of heatwaves on cardio-

respiratory hospital admissions in Helsinki by defining a heat wave using 90th and 95th percentile 

cutoffs for the daily mean temperature in May–August 2001–2017 and find that pneunomia admis-

sions rise by 20.5% in the age group above 75 for heat wave days and all respiratory admissions rise 

especially during intense and prolonged heat waves. In comparison, we find that a day above 25°C 

increases the monthly acute hospital visits only by 1.1% (Table 7) and the same-day visits by up to 

10.8% for the age group 85+ (results ranging from 2.9% among those aged 65 or less to up to 10.8% 

among the oldest age group). Monthly respiratory admissions 30 are impacted by about 3% in the age 

group 75 and older.  

Our results show that health care services need to adapt to increasing care needs in the future. 

However, it is also possible that in the long-term the population is able to cope with high temperatures 

better. For example, Folkerts et al. (2020) found that the temperature at which mortality is at its min-

imum (i.e., minimum mortality temperature) has increased in the Netherlands during the study period 

of 1995-2017. It remains to be analysed whether the measured acclimatization is due to physiological, 

infrastructural, behavioral or technological adaptation. In addition, Barreca (2012) found that warmer 

counties in the U.S. were less susceptible to high temperatures and humidity levels compared to cold 

counties. Further research on the acclimatization across time and the differences in vulnerability 

across different parts of Finland would be valuable. Research projecting local and national health con-

sequences of climate change and related costs in the health and social care sector is needed. At the 

same time, efforts should be put in studying the effectiveness of adaptation policies and interventions.  

Adaptation measures can be divided into short-term adaptation such as avoiding exposure by ac-

cessing cooler areas and spaces or using air conditioning. For example, Deschenes and Greenstone 

(2011) predict an 11 percent annual increase in residential energy consumption in the U.S. due to in-

dividual level adaptation to high temperatures by usage of air conditioning. Long-term adaptation con-

sists for example of migration and redesign of urban areas and construction methods. For example, 

Farhadi et al. (2019) examine the mitigation possibilities of urban heat island effect (UHI)2 and find 

that a lot can be done to mitigate the UHI effect, for example by increasing urban vegetation cover. 

Another important form of adaptation takes place at the community level, and policy measures are 

also needed to protect public health, for example, through education, preventive health care and heat 

wave warning systems (Martinez et al., 2019). The gradual unfolding of climate change will also prob-

ably allow for a number of other long-term adaptation measures.  

As a limitation of our study, the way in which causes of death are reported differs from the broader 

set of diagnoses reported in the data on hospital visits. Causes of death are more concentrated to a few 

common diagnoses, with the two most common diagnoses being cardiovascular and cancer diagnoses, 

and thus less information is available on the possibly multiple reasons leading to the death. In practice, 

heatrelated morbidity for some causes is not represented in the causes of death statistics and heat-

related mortality for some diagnoses is not represented in the morbidity statistics. This was visible for 

cardiovascular diseases: mortality from these causes increased, but not hospital visits. In conclusion, 

multiple indicators of health outcomes should be used in studying the health effects of temperature. 

 

 

 
2 The occurence of elevated temperatures in urban areas due to paved surfaces, human activities and energy usage. 
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As another limitation, it is important to note the uncertainty related to our results due to relatively 

small number of hot days even in the span of 20 years.  

Another concern about the causal inference in this study is the increase in travelling and the com-

mon Finnish habit of spending time at the summer cottages during the summer, which means that 

people are away from their home municipalities. Unfortunately, the hospital discharge register data 

only includes the home municipality of the individual, instead of the municipality where the visit took 

place. This hampers the causal analysis for obvious reasons. In addition, especially individuals with 

health problems might seek respite in the cooler countryside during heat waves, while individuals 

might be in a very unequal positions in their possibilities to escape hotter urban areas. Since this article 

only includes specialized care visits, there might also be some selection implications. Visits to occupa-

tional health care or private health care are not reported in our data. 
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Appendix A.  

 

Main results using the Poisson regression method. In the following regressions, the Stata command 

ppmlhdfe (Correia et al., 2019) is utilized. The effects on the acute hospital visits seem to be milder, 

but the effects on mortality are higher when using the Poisson method. It is important to note that the 

Poisson method did not allow for the application of municipality level population weights, which might 

partly explain discrepancies between the model results. 

 

 
Table A1: Effect of an additional day in specific temperature bins on monthly acute hospital visits per 

100,000 population, compared to the reference category (13-16°C) 

 Age group 

 <65 65-74 75-84 >84 

Temp <1°C 1.007*** 1.008*** 1.002 1.010*** 
 (0.002) (0.002) (0.003) (0.003) 

     
Temp 1-4°C 1.001 1.002 1.003 0.995** 

 (0.001) (0.002) (0.002) (0.002) 
     
Temp 4-7°C 1.002** 1.001 1.001 0.999 

 (0.001) (0.001) (0.001) (0.001) 
     

Temp 7-10°C 1.000 1.001 1.002** 0.999 
 (0.001) (0.001) (0.001) (0.001) 
     
Temp 10-13°C 1.000 1.000 1.000 0.999 
 (0.001) (0.001) (0.001) (0.001) 

     
Temp 16-19°C 0.999 1.000 0.999 1.000 

 (0.001) (0.001) (0.001) (0.001) 
     
Temp 19-22°C 1.002*** 1.001 1.000 0.999 

 (0.001) (0.001) (0.001) (0.001) 
     

Temp 22-25°C 1.001 1.000 1.000 1.006** 
 (0.001) (0.003) (0.003) (0.003) 
     
Temp >25°C 1.009*** 1.007 1.010 1.000 
 (0.004) (0.007) (0.007) (0.007) 

N 31090 31010 31050 31030 
Mean of Dep. Var. 1326.1 2688.7 4922.0 7447.0 

     Exponentiated coefficients; Standard errors in parentheses 
     * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A2: Effect of an additional day in specific temperature bins on monthly all cause mortality per 
100,000 population, compared to the reference category (13-16°C) 

 Age group 

 <65 65-74 75-84 >84 

Temp <1°C 0.994 0.998 0.997 1.016** 
 (0.009) (0.009) (0.006) (0.007) 
     

Temp 1-4°C 1.009 0.997 0.995 0.996 
 (0.008) (0.006) (0.005) (0.005) 

     
Temp 4-7°C 1.005 0.985*** 0.999 0.995 
 (0.005) (0.005) (0.003) (0.003) 

     
Temp 7-10°C 1.000 1.001 1.001 1.000 

 (0.003) (0.003) (0.003) (0.003) 
     

Temp 10-13°C 1.003 0.994 1.000 0.996 
 (0.004) (0.004) (0.002) (0.002) 
     
Temp 16-19°C 1.004 1.003 0.999 0.999 
 (0.004) (0.004) (0.003) (0.002) 

     
Temp 19-22°C 1.000 1.003 1.003 0.998 
 (0.003) (0.004) (0.002) (0.003) 
     
Temp 22-25°C 1.012 0.994 0.997 1.007 
 (0.008) (0.007) (0.006) (0.006) 
     

Temp >25°C 1.034 1.009 1.019 1.038** 
 (0.026) (0.024) (0.017) (0.016) 

N 28660 28850 30035 30320 
Mean of Dep. Var. 23.13 151.2 385.7 1122.6 

     Exponentiated coefficients; Standard errors in parentheses 
      * p < 0.10, ** p < 0.05, *** p < 0.01 
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