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ABSTRACT 

The genus Actinomyces consists of a heterogeneous group of gram-positive, mainly 
facultatively anaerobic or microaerobic rods showing various degrees of branching. In 
the oral cavity, streptococci and Actinomyces form a fundamental component of the 
indigenous microbiota, being among initial colonizers in polymicrobial biofilms. The 
significance of the genus Actinomyces is based on the capability of species to adhere 
to surfaces such as on teeth and to co-aggregate with other bacteria. Identification of 
Actinomyces species has mainly been based on only a few biochemical 
characteristics, such as pigmentation and catalase production, or on the use of a 
single commercial kit. The limited identification of oral Actinomyces isolates to 
species level has hampered knowledge of their role both in health and disease. In 
recent years, Actinomyces and related organisms have attracted the attention of 
clinical microbiologists because of a growing awareness of their presence in clinical 
specimens and their association with disease. 

This series of studies aimed to amplify the identification methods for Actinomyces 
species. With the newly developed identification scheme, the age-related occurrence 
of Actinomyces in healthy mouths of infants and their distribution in failed dental 
implants was investigated. Adhesion of Actinomyces species to titanium surfaces 
processed in various ways was studied in vitro.  

The results of phenotypic identification methods indicated a relatively low applicability 
of commercially available test kits for reliable identification within the genus 
Actinomyces. However, in the study of conventional phenotypic methods, it was 
possible to develop an identification scheme that resulted in accurate differentiation 
of Actinomyces and closely related species, using various different test methods. 
Genotypic methods based on 16S rRNA sequence analysis of Actinomyces proved to 
be a useful method for genus level identification and further clarified the species level 
identification with phenotypic methods. The results of the study of infants showed that 
the isolation frequency of salivary Actinomyces species increased according to age: 
thirty-one percent of the infants at 2 months but 97% at 2 years of age were positive 
for Actinomyces. A. odontolyticus was the most prominent Actinomyces colonizer 
during the study period followed in frequency by A. naeslundii and A. viscosus. In the 
study of explanted dental implants, Actinomyces was the most prevalent bacterial 
genus, colonizing 94% of the fixtures. Also in the implants A. odontolyticus was 
revealed as the most common Actinomyces species. It was present in 84% of 



 
Actinomyces -positive fixtures followed in frequency by A. naeslundii, A. viscosus and 
A. israelii. In an in vitro study of titanium surfaces, different Actinomyces species 
showed variation regarding their adhesion to titanium. Surface roughness as well as 
albumin coating of titanium had significant effects on adhesion.  

The use of improved phenotypic and molecular diagnostic methods increased the 
accuracy of the identification of the Actinomyces to species level. This facilitated an 
investigation of their occurrence and distribution in oral specimens in both health and 
disease.  
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TIIVISTELMÄ 

Gram-positiiviset pääosin fakultatiivisesti anaerobiset tai mikroaerobiset Actinomyces-bakteerit 
toimivat streptokokkien ohella primaarivaiheen kolonisoitujina suun eri pehmyt- ja 
kovakudospinnoille muodostuvissa biofilmeissä. Niiden merkitys kehittyvän biofilmin tärkeänä 
rakenneosana perustuu ko-aggregaatiokykyyn eri bakteerilajien välillä sekä erityisiin 
adhesiineihin, joiden avulla ne pystyvät vaikuttamaan tarttumiseen. Aktinomykesten tunnistus 
kliinisissä laboratorioissa on aiemmin perustunut yksittäisiin biokemiallisiin reaktioihin kuten 
katalaasiin ja pigmentin muodostukseen. Kiinnostus aktinomykeksiä kohtaan on kuitenkin 
lisääntynyt viime aikoina huomattavasti, koska Actinomyces- lajeja on esiintynyt kliinisissä 
näytteissä yhä enenevissä määrin ja aiemmasta kirjallisuudesta poiketen niiden on havaittu 
olevan osallisena myös erilaisissa infektioissa. Viimeaikaisten taksonomisten muutosten myötä 
Actinomyces-lajien tunnnistaminen kliinisissä laboratorioissa on kuitenkin edelleen vaikeutunut 
huomattavasti. Tässä väitöskirjatyössä kehitetty kattava fenotyyppisiin menetelmiin perustuva 
identifiointiohjeisto on mahdollistanut eri lajien esiintyvyyden ja merkityksen selvittämisen 
väitöskirjan muissa osatöissä, joissa selvitimme eri lajien ilmaantumista ja kolonisaation 
pysyvyyttä vastasyntyneen lapsen suun kehittyvässä bakteeristossa; tutkimme aktinomykesten 
merkitystä epäonnistuneiden hammasimplanttien pinnan kolonisoitujina ja eri Actinomyces-
lajien esiintymistä implantin menetykseen johtavassa tulehduksessa; selvitimme in vitro -
tutkimuksessa tarttuvatko aktinomykekset implanttirakenteen ts. titaanin pintaan, ja voiko 
tähän tarttuvuuteen vaikuttaa biomateriaalien pinta-ominaisuuksia muuttamalla. 
Tutkimustulokset osoittivat aktinomykesten esiintyvyyden lapsilla nousevan kolmasosasta jopa 
97 %:iin kahden ensimmäisen elinvuoden aikana. Ylivoimaisesti yleisin Actinomyces-löydös 
jokaisella näytteenottokerralla oli A. odontolyticus, jota esiintyi yleisesti jo kahden kuukauden 
ikäisillä lapsilla. A. naeslundii oli seuraavaksi yleisin Actinomyces-laji, mutta sitä löytyi 
ensimmäisen kerran vasta vuoden iässä, mikä on mahdollisesti yhteydessä hampaallisuuteen. 
Tutkimustulosten mukaan aktinomykekset muodostivat yleisimmän bakteeriryhmän (94% 
näytteistä) epäonnistuneiden implanttien kolonisoitujina. Myös näissä näytteissä A. 
odontolyticus osoittautui yleisimmäksi Actinomyces-lajiksi. Lisäksi A. naeslundii, A. viscosus ja 
A. israelii tunnistettiin yllättävän useista implanttinäytteistä. In vitro tutkimus titaanin 
pintaominaisuuksien vaikutuksesta eri Actinomyces-lajien tarttumiseen osoitti, että 
elektronimikroskoopissa tarkasteltuna eri lajeilla on erilainen affiniteetti titaanin pintaan 
proteiinipinnoitteen sekä pinnan karheusasteen vaikuttaessa solumääriin.  
 
Tämän väitöskirja-tutkimuksen myötä kehitetyt fenotyyppiset identifiointi-ohjeistot 
mahdollistivat eri Actinomyces-lajien tunnistamisen kliinisistä näytteistä yhä luotettavammin. 
Luotettava laji-tason identifiointi loi edelleen perustan tutkimukselle, jossa selvitettiin eri 
Actinomyces-lajien osuutta ja merkitystä suun pinnoille muodostuvissa biofilmeissä sekä 
terveyden että infektioiden kannalta.  

 

Avainsanat: aktinomykes, identifiointi, adheesio, kolonisaatio, implantti, titaani  
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1 INTRODUCTION 

Actinomyces are commonly found in considerable proportions in indigenous microbiota 
of the mouth, and they are an important group of early colonizers in dental plaque 
formation (Nyvad and Kilian 1987; Liljemark et al. 1993; Könönen et al. 1999). The 
composition of the mature dental plaque, which often includes potential oral pathogens, 
is therefore dependent on the primary binding of these pioneer bacteria. The time of 
appearance and nature of species that are involved in the primary colonization are of 
great importance as they form the basis for further colonization, and therefore, may 
substantially affect the composition of the developing, both indigenous and pathogenic, 
oral microbiota. The significance of the species is based on their capacity to adhere to 
deposits as well as their co-aggregating properties with other bacteria (Ellen and 
Sivendra 1985; Gibbons and Hay 1988; Cisar et al. 1989). Certain Streptococcus and 
Actinomyces species predominate in early plaque formation and colonize first on tooth 
and/or mucosal surfaces providing a substrate for the adherence of more fastidious 
plaque microbes, including gram-negative, strictly anaerobic bacteria (Kolenbrander 
1993; Nesbitt et al. 1993).  
 

Actinomyces may be isolated from infections in the oral region as well as from other 
sites of the human body (Schaal 1986). Knowledge of the interrelationships among 
Actinomyces and related organisms has improved greatly in the past decade, and the 
use of improved phenotypic and molecular diagnostic methods of analysis has not only 
resulted in more reliable species identification but has also facilitated the recognition of 
many new taxa (Funke et al. 1994; Ramos et al. 1997; Hall et al. 2002; Hall et al. 2003; 
Hall et al. 2003; Woo et al. 2003). However, little effort has been directed to study the 
establishment and distribution of different Actinomyces species in the healthy oral 
cavity. Also, the identification of Actinomyces species isolated from oral infections has 
mainly been based on only a few biochemical characteristics, such as pigmentation 
and catalase production, or on the use of a single commercial kit. This somewhat 
unreliable identification of oral Actinomyces isolates to species level has hampered 
knowledge of their relationships, natural habitats, prevalence and pathogenicity 
(Liljemark and Bloomquist 1996).  
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2 REVIEW OF THE LITERATURE 

2.1 Oral bacterial colonization  

In the mouth, which is an open-growth system, bacteria have to attach to a surface in 
order to persist and grow (Gibbons and van Houte 1975). Attachment is an essential 
step for colonization and the process among bacteria occurs in a highly selective 
manner; different species among genus, e.g. Streptococcus, attach better to tongue 
and/or cheek surfaces, whereas others prefer non-shedding tooth surfaces (Frandsen 
et al. 1991). However, not all of the micro-organisms that enter the mouth are able to 
colonize. Most bacteria in the oral cavity are only transient, while others succeed in 
finding a suitable surface for persistent colonization. The microbiota consists of 
commensals and, on some occasions, also pathogens. The commensal microbiota is 
beneficial to the host by blocking adherence and metabolism of pathogens. However, 
members of the commensal microbiota can act as opportunistic pathogens when their 
habitat is disturbed or when micro-organisms are found at sites not normally accessible 
to them. It has been suggested that dental diseases are caused by imbalances in this 
resident oral microbiota (Marsh 2003). 

2.1.1 The oral cavity as a habitat for bacteria 

Several distinct surfaces in the mouth provide different habitats for bacteria to colonize. 
The oral biofilm ecology is constantly changing: potential niches increase significantly 
when tooth eruption allows further microbial colonization. Moreover, the development 
from the primary to permanent dentition, possible loss of teeth, and use of prosthetic 
reconstructions continuously changes the ecological conditions in the oral cavity, making 
it a unique habitat for colonization. All these surfaces are bathed by oral fluids: saliva and 
gingival crevicular fluid serve nutrients and deliver components of host defences for 
regulating the colonization. They also help remove loosely attached bacteria from 
surfaces. Fluctuations in the stable oral ecosystem can further be induced by external 
factors, such as daily food, dental care or possible antibiotic therapy.   

2.1.2 Pellicle formation and initial bacterial adhesion  

All exposed surfaces in the oral cavity are immediately coated with a proteinaceous layer 
providing receptor sites for bacterial adhesion (Gristina 1987). This acquired pellicle is a 
bacteria-free biofilm, covering oral hard and soft tissues as well as non-oral surfaces 
(Dawes 1963; Lendenmann et al. 2000). The major salivary proteins in pellicle are acidic 
proline-rich protein, statherin, secretory IgA, cystatin, mucin, lactoferrin, lysozyme, and 
amylase (Lendenmann et al. 2000). Early colonizers, such as streptococci and 
Actinomyces, are able to recognize these proteinacous components (Kolenbrander and 
London 1993), and therefore the pellicle determines at least the initial bacterial attachment. 
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The simultaneous presence of bacterial adhesion and inhibition factors indicates that the 
pellicle functions in recruiting micro-organisms and at the same time controls their growth, 
thereby dictating the final microbial profiles on pellicle (Clark et al. 1978; Gibbons and Hay 
1989; Lendenmann et al. 2000; Li et al. 2004). The composition of this pellicle varies in 
different parts of dentition (Carlen et al. 1998): different target surface (e.g. biomaterial) 
properties may also influence different pellicle compositions and, therefore, the initial 
plaque formation (Leonhardt et al. 1995). 

2.1.3 Bacterial attachment and coaggregation  

When bacteria are transported towards a surface they are capable of contact with it.  
Adhesion usually takes place through adhesins, located on bacterial surface, or fimbriae, 
which further interact with specific target molecules or ligands (Ellen et al. 1997). After this 
initial adhesion to a surface, more physical anchorage called attachment can occur. 
Attachment is an essential step for further colonization. When bacteria have been firmly 
attached they start to grow and communicate, and therefore the biofilms can further develop 
(Quirynen and Bollen 1995; Costerton 1999). Coaggregation is a process where distinct 
bacteria in suspension (in the development of multi-species biofilms) attach to one another 
with specific molecules (Whittaker et al. 1996; Rickard et al. 2003). In coaggregation, 
bacterial strains bind specifically to other bacteria. Each species seems to have specific 
partners, such as Streptococcus sp. or Porphyromonas gingivalis with Actinomyces 
naeslundii and Prevotella loescheii with Actinomyces israelii (Kolenbrander 1988). Also, 
certain Capnocytophaga strains coaggregate with strains of Actinomyces israelii but not with 
Actinomyces viscosus or with any streptococci (Kolenbrander and Phucas 1984; 
Kolenbrander and Andersen 1986) suggesting co-adhesion between pairs being highly 
species depending.  Interactions between different bacteria and between bacteria and their 
host are factors which control the balance within the microbiota and the development of 
possible pathologic conditions (Kolenbrander 2000).  

2.2 Actinomyces in humans 

2.2.1 Natural habitat 

Many Actinomyces species and related organisms belong to anaerobic indigenous 
microbiota of human mucous membranes of the oropharynx, gastrointestinal tract and 
female genital tract. Members of the genus belong to the initial colonizers on oral 
surfaces, contributing to oral biofilm development at early stages (Socransky 1970; 
Socransky et al. 1977; Theilade et al. 1982; Nyvad and Kilian 1987; Gibbons 1989; 
Marsh and Martin 1992). Despite the plethora of new species defined from human 
sources in recent years, it is clear that knowledge of the habitats, clinical prevalence, and 
pathogenic potential of many Actinomyces and related organisms is inadequate, and 
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there are indications that much new diversity still remains to be discovered (Hall et al. 
1999; Hall et al. 2001).  

2.2.2 Actinomyces in infections  

Though Actinomyces species are part of the normal, resident microbiota of distinct 
surfaces of the mouth, they contribute to different plaque-involved diseases, e.g. dental 
caries and periodontal diseases (Moore and Moore 1994). Actinomyces are commonly 
found in endodontic infections as part of a polymicrobial infection (Peters et al. 2002). 
Although Actinomyces species have been associated with teeth with necrotic pulps, they 
are mainly connected with cases of failed root canal treatment (Byström et al. 1987; 
Sundqvist et al. 1998; Kalfas et al. 2001; Xia and Baumgartner 2003). Actinomyces are 
capable of causing extraradicular infections, thus preventing periapical healing by 
conventional therapy (Happonen et al. 1985). Members of the genus have also frequently 
been isolated from infected dentin of active root caries lesions  (van Houte et al. 1994; 
Brailsford et al. 1999; Shen et al. 2005). Although especially A. naeslundii, A. israelii, and 
A. gerencseriae have been the most isolated species, the role of individual Actinomyces 
species in the root caries process remains unclear (Brailsford et al. 1999). Also, various 
reports of prevalence of Actinomyces species in periodontal health and disease have 
been published. However, the subgingival actinomycetal microbiota (with high detection 
frequencies up to 98%) of both chronic periodontitis patients and periodontally healthy 
patients has been reported to be very similar (Ximenez-Fyvie et al. 2006).  

 

In recent years, Actinomyces and related organisms have attracted the attention of clinical 
microbiologists, mainly because of a growing awareness of their presence in clinical 
specimens and because of their association with disease (Funke et al. 1997; Hall et al. 
1999; Hall et al. 2001). In addition to various oral infections, actinomycetes can act as major 
pathogens leading to extra-oral actinomycosis in different parts of the human body 
characterized by abscess formation, tissue fibrosis and draining sinuses (Schaal and Lee 
1992). All the Actinomyces species etiologically involved in actinomycotic lesions in humans 
belong to the indigenous facultatively pathogenic microbiota of the human mucosal 
surfaces, especially in the oral cavity. A. israelii and A. gerencseriae are, by far, the most 
important agents of this disease (Schaal and Lee 1992; Pulverer et al. 2003); however, 
some newer species, including A. turicensis and A. europaeus, are also clearly associated 
with mixed infections in superficial soft tissue abscesses (Sabbe et al. 1999). These 
pathogenic species are rarely isolated alone, but rather as part of polymicrobial infection 
together with various aerobic and/or anaerobic species.  

 

Several Actinomyces species, including A. cardiffensis (Hall et al. 2002), may be involved in 
pelvic inflammatory disease associated with intrauterine contraceptive devices (Yoonessi et 
al. 1985; Evans 1993; Woo et al. 2002; Hall et al. 2003). Other species, e.g., A. meyeri, 
have been isolated from infections associated with endoscopic stents in chronic pancreatitis 
(Harsch et al. 2001) as well as from pyogenic liver abscesses (Miyamoto and Fang 1993; 
Felekouras et al. 2004). A. naeslundii and A. israelii are known to avidly adhere to hip joint 



 

7 

prosthesis to cause infection (Hall et al. 1999; Zaman et al. 2002). However, the natural 
habitat of many Actinomyces species has remained obscure and their clinical relevance as 
a part of a polymicrobial infection is not fully understood. Also, infections due to 
Actinomyces can be underdiagnosed because the identification to the species level can be 
notoriously difficult and time-consuming (Sabbe et al. 1999; Hall et al. 2001). In addition, 
there are a number of species differences in antimicrobial suspectibility profiles which 
suggests that the accurate identification and specification may have an impact on clinical 
outcome (Smith et al. 2005). 

2.3 Taxonomy and identification of Actinomyces  

2.3.1 Taxonomy 

The highest rank in bacterial classification is domain which is followed by phylum, class, 
subclass, order, suborder, family, genus, and species (Stackebrandt et al. 1997). These 
taxonomic ranks and examples are depicted in Table 1. Families share phenotypic 
characteristics which should be consistent phylogenetically. Actinomyces belong to the 
family Actinomycetaceae (Buchanan 1918). Other genera in this family are Actinobaculum, 
Arcanobacterium, Mobiluncus, and Varibaculum. All species within a genus form a well-
defined group, clearly separated from other genera. The genus Actinomyces was first 
named by Harz in 1877, when he described a causative agent of bovine actinomycosis. 
The species (e.g. A. israelii, A. odontolyticus) is the basic and the most important group in 
bacterial systematics. Strains are defined as the descendants of a single isolate in pure 
culture, and usually are made up of a succession of cultures ultimately derived from an 
initial single colony. A type strain is one specific representative strain selected to describe a 
species (Stackebrandt et al. 1997). 
 

 

 

 

 

 

 

During the past ten years the taxonomy of Actinomyces has undergone considerable 
changes and expansions, with a plethora of new species defined (Table 2). The novel 
species include A. cardiffensis (Hall et al. 2002), A. hongkongensis from pelvic 
actinomycosis (Woo et al. 2003), A. nasicola from nose (Hall et al. 2003), A. dentalis 

Table 1. Taxonomic ranks 
Formal rank Example 
Domain Bacteria 
Phylum Actinobacteria 
Class Actinobacteria 
Subclass Actinobacteridae 
Order Actinomycetales 
Suborder Actinomycineae 
Family Actinomycetaceae 
Genus Actinomyces 
Species Actinomyces odontolyticus (example) 

Adapted and modified after Stackebrandt et al. (1997). 
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(Hall et al. 2005), and A. oricola from dental abscess (Hall et al. 2003). Also, some 
Actinomyces-like isolates have been classified as Varibaculum sp. (Hall et al. 2003) 
and few former Actinomyces species have been assigned to the closely related genera 
Arcanobacterium and Actinobaculum (Lawson et al. 1997; Ramos et al. 1997). In 
addition, Johnson et al. (1990) have proposed subdivision of A. naeslundii into three 
new genospecies: genospecies 1 included A. naeslundii serotype I; genospecies 2 
included A. naeslundii serotype II and III, and human strains of A. viscosus (serotype 
II); genospecies 3 comprised Actinomyces WVA 963. In our study, however, we have 
kept A. naeslundii and A. viscosus as separate species based on their biochemical key 
reactions (A. naeslundii is catalase-negative and urease- positive whereas A. viscosus 
is catalase-positive and urease-negative). 
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2.3.2 Conventional identification 

Traditionally, descriptive and diagnostic bacteriology has been based on phenotypic 
characteristics of bacteria and their function. The presumptive identification of 
Actinomyces is based on colony and cell morphology and growth patterns in different 
gaseous athmospheres (aerotolerance). Actinomyces strains produce variable colony 
forms from regular smooth to irregular rough, or crumbled colonies (Schaal 1986). Certain 
species have unique colony characteristics: A. odontolyticus produces red-brown 
pigment on blood agar and A. israelii colonies are white, irregular, and “molar-tooth”-
shaped. The genus cannot be regarded as strictly anaerobic but rather facultatively 
anaerobic or microaerobic (Slack and Gerencser 1975). Actinomyces species ferment 
glucose to a characteristic pattern of metabolic end products consisting of succinic, 
lactic, and acetic acids. 

 

The genus consists of a heterogeneous group of gram-positive, straight or slightly 
curved rods but some species may even appear as short coccobacilli. As they are often 
pleomorphic in shape, some cells show true branching, while others, such as A. israelii, 
can be filamentous. Production of catalase and indole, reduction of nitrate, and 
synergistic hemolysis (the CAMP test) are used in presumptive identification of the 
genus. For a precise identification to the species level, a wide battery of tests are 
needed, as described in detail in anaerobic bacteriology manuals (Summanen et al. 
1993; Jousimies-Somer et al. 2002).  

2.3.3 Molecular methods for identification 

Nucleotide sequence analysis of the bacterial 16S rRNA gene has greatly expanded 
the ability to reliably identify bacterial isolates to the species level (Woese 1987). 
Thousands of rRNA sequences are currently electronically freely available by multiple 
gene banks. Diagnosis of pelvic actinomycosis has recently been confirmed in several 
studies based on sequencing (Woo et al. 2002; Elsayed et al. 2006). However, 
evaluation of gene sequence analysis for the identification of Actinomyces species 
compared to other methods in clinical laboratories is still controversial. Checkerboard 
DNA-DNA hybridization has been used for the detection and identification of 
Actinomyces species and genospecies from plaque samples (Ximenez-Fyvie et al. 
1999). Hall et al. (1999) have shown that amplified 16S ribosomal DNA restriction 
analysis (ARDRA) is a rapid and highly discriminatory method for identification of 
clinical Actinomyces isolates. However, it only seems to be suitable for specialist 
laboratories. Pyrolysis mass spectrometry (PMS) has been used in differentiating 
groups of organisms but seems to be impractical for the identification of Actinomyces 
isolates (Hall et al. 1999).  
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2.4 Actinomyces in oral biofilms 

2.4.1 Adhesion mechanisms of Actinomyces 

Actinomyces species seem to display different patterns of colonization and distribution in 
the mouth, which may be correlated with their different affinities and binding specificities 
to distinct surfaces (Ellen 1976; Cisar et al. 1984). Adhesins mediate the attachment of 
Actinomyces to host cells but also to other bacteria involving intra- or intergeneric 
coaggregation. Some Actinomyces species, such as A. naeslundii and A. viscosus, have 
a superior ability to adhere to a surface with their special surface structures, type 1 and 2 
fimbriae (Cisar et al. 1984; Cisar et al. 1989). Type 1 fimbriae (present mainly on A. 
viscosus) have affinity for proline-rich proteins and protein statherin on collagen and tooth 
enamel (Gibbons and Hay 1988; Gibbons and Hay 1989; Liu et al. 1991) through 
adhesin-receptor binding, while type 2 fimbriae (present on A. naeslundii and A. 
viscosus) bind to epithelial and bacterial surfaces (Cisar et al. 1984; Strömberg et al. 
1992; Hallberg et al. 1998). Type 2 fimbrial lectins of A. naeslundii and A. viscosus 
facilitate phagocytosis by recognizing the lactose-containing receptors on 
polymorphonuclear leukocytes (Sandberg et al. 1986). Other Actinomyces species, e.g., 
A. israelii, A. meyeri, and A. gerencseriae, are reported to lack these kinds of fimbriae 
and related genes (Cisar et al. 1983; Yeung 1992). A. odontolyticus, on the other hand, 
exhibits a genetically related but functionally distinct adhesin, structurally different from 
fimbriae (Cisar et al. 1983; Hallberg et al. 1998). Different surface-associated molecules 
on Actinomyces cells have been suggested to determine, to a large extent, the ecological 
niche of individual species within the oral cavity (Hallberg et al. 1998). In addition, the 
receptors on Actinomyces cells can be recognized by adhesins of other bacteria in 
intergeneric coaggregation (Ruhl et al. 2004).   

2.4.2. Oral colonization in infants – mucosal surface 

At birth, the oral cavity is sterile and composed solely of the soft tissues. Acquisition of 
the resident oral microbiota begins within first few hours. The mouth becomes 
colonized from the environment, first from the birth canal and then from the mother 
during the first feeding. Bacteria that are capable of attaching to epithelial cells or co-
aggregating with other species attached to these surfaces have the advantage of 
colonizing mucosal surfaces (van Houte 1983). For a long time, anaerobes were 
considered to be rare in infants’ mouths as they were assumed to be dependent on the 
environment of gingival crevices and therefore on the presence of teeth (Socransky 
and Manganiello 1971; Evaldson et al. 1982). However, according to studies by 
Könönen et al. (1992; 1999), initial colonization with anaerobes occurs within the first 
three months of life and anaerobes are frequently isolated from the edentulous mouths 
of infants. Bacterial colonization of the oral cavity seems to be a selective process 
relative to the age of infants: different species colonize at appropriate times for them 
(Könönen 2000). The colonization patterns of distinct Actinomyces species to oral 
surfaces have also been shown to differ (Ellen and Sivendra 1985).  
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2.4.3 Dental plaque – tooth surface 

Dental plaque accumulation starts within few hours of tooth eruption with the early 
colonization of streptococci and Actinomyces species on pellicle-coated tooth surfaces 
(Socransky et al. 1977; Nyvad and Kilian 1987; Kolenbrander et al. 1990). Bacterial 
surface molecules interact with components of the acquired pellicle, enabling the 
bacteria to attach to the pellicle-coated tooth surface despite the mechanical shearing 
forces of salivary flow. The early colonizers are of great importance because they 
provide attachment substrates and thus influence the succeeding stages of plaque 
biofilm formation via coadhesion properties (Kolenbrander 1989; Goulbourne and Ellen 
1991; Nesbitt et al. 1993). The ability of Actinomyces species of both intra- and 
intergeneric coaggregation facilitates their accumulation in early plaque (Marsh 2004). 
These later colonizers prefer to attach to the performed layer of early-colonizing 
bacteria rather than the saliva-coated tooth surface. It has been recognized that 
bacteria exist in complexes in developed plaque (Socransky et al. 1998). This indicates 
that there is a degree of order in colonization of different bacteria. For example, as 
gingivitis develops, a key change in the microbial composition of dental plaque is the 
ascendancy of Actinomyces spp. and gram-negative rods at the expense of 
Streptococcus spp. (Dalwai et al. 2006). 

2.4.4 Bacterial adhesion to biomaterials – inorganic surface  

Biomaterials are used extensively in medicine and dentistry, e.g. in prosthetic hip joints, 
catheters, and dental implants. Defined as biocompatible materials, they are mostly 
metals, ceramics, and polymers, which are used in living tissue or in contact with the 
tissue to replace diseased or damaged tissues. Because bacterial infection of 
biomaterials is the most important factor for failure of these medical devices (Razatos 
et al. 1998), initial bacterial adhesion and further development of complex multibacterial 
biofilms on biomaterial surfaces is a common clinical problem (Costerton et al. 1999; 
Drake et al. 1999). On the other hand, prevention of bacterial adhesion, for example by 
bacteriocins, have been used to decrease bacterial attachment to medical devices; this 
may represent a novel strategy to control catheter-related infections (Levy 2004; 
Fontana et al. 2006). However, antibiotic catheters may be at a higher risk of being  
colonized by antibiotic-resistant bacteria (Tambe et al. 2001). 

Adhesion of bacteria to solid surfaces depends on many factors, including bacterial 
characteristics, environmental factors (e.g., the presence of serum proteins), and material 
properties of the target surface (Mabboux et al. 2004). For a given material surface, 
different bacterial species and strains adhere differently; this can be explained by their 
different physicochemical characteristics. Roughening increases the area available for 
adhesion, serving pits and grooves, and therefore providing favorable sites for 
colonization (Brecx et al. 1983; Nakazato et al. 1989). Although rough surfaces harbor 
more plaque than smooth surfaces (Smales 1981; Bollen et al. 1996), it is still unclear 
whether all early-colonizing species prefer rough and irregular surfaces for initial 
adhesion. Different prostheses or implant devices have different surface roughnesses or 
finishes which may play a role in bacterial attachment and initiation of biomaterial-related 
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infection (An et al. 1997). The adhesion of Actinomyces cells to a solid surface, such as 
intrauterine contraceptive device and prosthetic hip joint, is implicated in the infectious 
processes of these non-oral sites (Yoonessi et al. 1985; Hall et al. 1999; Zaman et al. 
2002). Similarly, osseointegrated dental implants provide hard, non-shedding surfaces for 
microbial plaque accumulation, including Actinomyces (Nakou et al. 1987; Mombelli et al. 
1988; Rutar et al. 2001).  

2.5  Dental implants 

2.5.1 Terminology 

Dental implant is a permucosal device which is biocompatible and biofunctional and is 
placed on or within the bone associated with oral cavity to provide support for fixed or 
removable prosthetics. The implant is composed of a fixture which is placed surgically 
in the jaw bone and is allowed to bond with the bone and serve as an anchor for the 
replacement of a tooth or teeth. Histologically these structures possess no supporting 
structure like periodontal ligament. The abutment is an attachment placed on top of the 
fixture. Implant denture receives its stability and retention from a dental implant and is 
fitted over the abutment(s). When this system is under masticatory force, the implant is 
“loaded”. Osseointegration implies that a contact is established without interposition of 
non-bone tissue between normal remodeled bone and an implant entailing a sustained 
transfer and distribution of load from the implant to and within the bone tissue at light 
microscopy level (Brånemark 1985). Implants are therefore closely linked to oral 
tissues, which signify that plaque control is of greater importance for implants than for 
natural teeth (Rams et al. 1984). Without the initial attachment to implant surfaces by 
early colonizers, subsequent polymicrobial accumulation and colonization leading to 
implant-associated infections do not occur. 

2.5.2 Titanium as a biomaterial 

Titanium is the most common implant biomaterial used to replace missing teeth because 
of its excellent corrosion resistance combined with an exceptional degree of 
biocompatibility in the oral environment. Titanium surface is very reactive mainly due to 
the surface oxide layer covering it (Kasemo and Lausmaa 1988). Titanium adsorbs 
proteins, such as albumin, collagenase, fibronectin, and fibrinogen from oral biological 
fluids (Kane et al. 1994; Steinemann 1998). However, the importance of these specific 
proteins or protein films on the characteristics of titanium is not generally accepted (Serro 
et al. 1997; Serro et al. 1999; Serro et al. 2004). Different surface properties of titanium 
are able to influence the formation of bone-implant contact. Rough surfaces seem to 
favor bone deposition, offering better bone anchorage compared to smooth titanium 
surface (Wennerberg et al. 1995). Roughness of titanium surfaces are also known to play 
a predominant role in bacterial adhesion and plaque rate (Quirynen et al. 1996).  
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2.5.3 Implant therapy 

Osseointegrated (osseointegration named by Brånemark in 1952) dental implants form 
the major tool in prosthodontics to replace teeth ranging from a single tooth to full 
dentures (Weber and Lang 1991). Although most implants are extremely successful 
with survival rates up to 98% (Adell et al. 1981; Albrektsson et al. 1986; Melo et al. 
2006), implants can fail. Two main reasons for this failure are bacterial infection and 
mechanical stress (Becker et al. 1990).  

2.5.4 Implant failure                                                                                         

One of the key factors for the success of dental implants is the maintenance of healthy 
tissues around them. Bacterial plaque accumulation induces inflammatory changes in 
the soft tissues surrounding oral implants and may lead to progressive destruction 
(peri-implantitis) and, ultimately, to implant failure. Implant failure has been defined as 
the inadequacy of the host tissue to establish or to maintain osseointegration (Esposito 
et al. 1998). Implant failures have been classically ascribed as early and late failures. 
Early implant failures include improper preparation resulting in bone damage, bacterial 
contamination, improper surgical placement, and premature fixture overload 
(Rosenberg et al. 1991). The so-called late implant failures may be due to peri-
implantitis or biochemical overload, or a combination of these two occurring in 
situations where osseointegration of previously stable implant is lost (Tonetti 2000). 
Peri-implantitis is a site-specific infection resulting in loss of supporting bone around an 
osseointegrated implant (Mombelli et al. 1987).  

2.5.5 Microbiology related to implants 

Similar to natural teeth, dental implants provide a surface for microbial colonization (O' 
Mahony et al. 2000). Investigations of the microbiota related to implants have shown 
that both sub- and supragingival bacteria on implants are originally derived from the 
natural flora of the oral cavity (Heimdahl et al. 1983; Lekholm et al. 1986). Therefore, 
the status of remaining dentition reflects the microbiota on these implant sites. For 
example, dentate patients are known to have more periodontal pathogens at their 
implant surfaces compared to edentulous implant patients. This suggests that 
periodontal pockets provide a reservoir for colonization of these sites (Apse et al. 1989; 
Quirynen and Listgarten 1990). Opportunistic periodontal pathogens, such as 
Actinobacillus (currently Aggregatibacter) actinomycetemcomitans, Porphyromonas 
gingivalis, Prevotella intermedia, and Fusobacterium nucleatum, have been intensively 
investigated in association with peri-implantitis and failing implants (Leonhardt et al. 
1999; van Winkelhoff et al. 2000).  On the other hand a later study by Leonhardt et al. 
(2002) showed that the presence of these periodontal species may not be associated 
with impaired implant conditions but rather with being part of the resident microbiota. 
Predominant bacteria around periodontally healthy teeth and implants, however, are 
reported to be very similar (Apse et al. 1989; Mombelli and Mericske-Stern 1990).   
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3 WORKING HYPOTHESES AND AIMS OF THE STUDY 

 

Working hypotheses: 
1) Actinomyces isolated from human sources can be reliably identified to species level 
by use of phenotypic methods. 

2) Actinomyces species will establish infants’ oral cavity during the first year of life.  

3) Different Actinomyces species will have different susceptible times for their 
colonization in infants’ mouths. 

4) Certain Actinomyces species will be connected to infections associated with failed 
dental implants.  

5)  Differently processed titanium surfaces in vitro may have effect on the adhesion of 
distinct Actinomyces species.  

 

The aims of the present study were:  
1) to clarify the phenotypic and molecular identification methods of Actinomyces and to 
compare different methods used in clinical microbiology laboratories      

2) to examine, using a longitudinal study design, the age-related occurrence and 
distribution of oral Actinomyces species in infants prior to tooth eruption and in children 
with erupted teeth       

3) to investigate the occurrence and distribution of different Actinomyces species in 
explanted fixture specimens in order to clarify the involvement of Actinomyces species 
in oral implant-related infections 

4) to examine the impact of titanium surfaces processed in various ways on initial 
adhesion of Actinomyces species and to evaluate the effect of albumin coating on this 
adhesion 
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4 MATERIALS AND METHODS 

4.1 Clinical isolates and reference strains (study I-V, unpublished)  

The bacteria used in Studies I-VI are depicted in Table 3. The clinical isolates were 
obtained from infants’ saliva, failed dental implant fixtures, submandibular abscesses, 
and from non-oral sites. Strains exhibiting gram-positive (often branching) rod-shaped 
morphology were presumptively assigned as members of the genus Actinomyces 
based on suspectibility to special antimicrobial potency disks vancomycin and 
kanamycin and resistance to colistin, and on production of succinic acid as the major 
end product of glucose metabolism as determined by GLC. Twenty-one reference 
strains from international culture collections (ATCC, CCUG) were used as control 
strains in developing the identification scheme. All strains used in the studies were 
revived from frozen (-70oC) stocks, subcultured on Brucella blood agar twice, and 
incubated anaerobically at 35-37 oC for 3-5 days before testing.  

4.2 Identification methods (study I-IV, unpublished) 

4.2.1 Biochemical characterization 

Colony morphology was examined under dissecting microscope and cell morphology in 
Gram stained preparations. Pigmentation was assessed on Brucella and rabbit laked 
blood (RLB) agar media after incubation for 4-5 days, production of catalase was tested 
using 15% hydrogen peroxide (H2O2) and reduction of nitrate to nitrite using a disk test 
(Jousimies-Somer et al. 2002). Staphylococcus aureus ATCC 25923 was used as an 
indicator strain for the CAMP test (synergistic hemolysis) on Brucella blood agar. 
Enzyme tests were performed using individual diagnostic tablets (Rosco, Taastrup, 
Denmark), including hydrolysis of urea and esculin, and production of α-fucosidase, α-
glucosidase, β-galactosidase (ONPG), β-N-acetyl- glucosaminidase, α-mannosidase, 
and arginine dihydrolase (the latter two only for A. israelii and A. gerencseriae), l-
arabinose, and β-xylosidase (for differentiation of Arcanobacterium bernardiae and 
Actinomyces turicensis) with incubation at 35-37oC for 4 h in air according to the 
manufacturer’s instructions. The fermentation of carbohydrates, including arabinose, 
glucose, maltose, mannitol, raffinose, rhamnose, sucrose, trehalose, and xylose, were 
tested using prereduced anaerobically sterilized (PRAS) biochemical media incubated 
at 35-37oC for a minimum of 5 days. 



Table 3.  Subjects, strains and identification methods included in Studies I-V, unpublished 
 
Study Subjects Bacterial strains Source Identification methods used 
 
I 

 
--- 

 
19 reference strains 
 
 
70 clinical isolates 

 
ATCC, CCUG 
(n=19) 
 
Infectious origin; 
(n=41) 
Human saliva; (n=29) 
 

 
Phenotypic testing:developed 
identification scheme 
 
API ZYM (bioMérieux, Marcy-l´ 
Etoile, France)  
 
4-MU linked substrates (SIGMA, 
St. Louis, USA) 

     
     
II --- 21 reference strains 

 
 
86 clinical isolates 

ATCC, CCUG 
(n=21) 
 
infectious origin; 
(n=65) 
human resident flora; 
(n=21) 

 
 
RapID ANA II (Remel, Lenexa, 
Kans., USA) 
  
Rapid ID 32 A (bioMérieux, Marcy-
l´ Etoile, France) 
 
Rapid CB Plus (bioMérieux, Marcy-
l´ Etoile, France) 
  
BBL Crystal ANR ID (Becton 
Dickinson Microbiology System, 
Cockeysville, Md., USA) 
   

     
     
III 39 infants 428 clinical isolates Infant’s saliva Phenotypic testing 

 
CFA analysis 

     
IV 17 patients 98 clinical isolates Failed dental implant 

fixtures (n=33) 
Phenotypic testing 
 
Partial sequencing of the 16S rRNA 
gene  

     

V --- 4 clinical isolates Failed dental implant 
fixtures (n=3) 

---- 

    Neck abscess (n=1)  
     
unpublished --- 47 clinical isolates Failed dental implant 

fixtures (n=33) 
 

     
 

17
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In Study I, to assess the uniformity of reactivity by different test systems, the reference 
strains were additionally tested with the API ZYM kit (bioMerieux, Marcy l’Etoile, 
France), and tests based on 4-methyl-umbelliferyl-linked substrates (4-MU; SIGMA, St. 
Louis, USA). Inocula for testing enzyme activities were from 3-4 days’ growth on 
Brucella agar plates and adjusted to cell turbidity of McFarland #5-6 in sterile water for 
API ZYM. To evaluate the applicability of different commercial kits for identification of 
Actinomyces species, RapID ANA II system (Remel, Lenexa, Kansas, USA), the Rapid 
ID 32 A system (bioMerieux, Marcy l’Etoile, France), the Rapid CB Plus system 
(Remel, Lenexa, Kansas, USA) and BBL Crystal ANR ID system (Becton Dickinson 
Microbiology System, Cockeysville, MD) were used. 

4.2.2 Sequence analysis of the 16S rRNA gene  

Bacterial DNA was extracted from pure cultures and the 16S rRNA gene was amplified 
as described previously by Jalava & Eerola (1999). The DNA sequencing was done 
using API PRISM DNA 310 Genetic Analyzer (Applied Biosystems). Fragments of the 
gene about 450 nucleotides long were sequenced. The sequences were determined 
and compared to the sequences of GenBank (Maidak et al. 2001; Benson et al. 2004). 
The sequencing primers have been previously described by Jalava et al. (1995).   

4.3 Study specimens and microbiological procedures (study III & IV) 

Isolates from infants: Altogether 428 potential Actinomyces isolates originally 
detected from both nonselective, aerobically or anaerobically incubated media and from 
Actinomyces-selective CFAT agar were included in further testing. Thirty-nine healthy 
Caucasian infants from whom saliva samples had been collected on all five scheduled 
sampling occasions at 2, 6, 12, 18, and 24 months of age (Könönen et al. 1999) were 
included in this study. None of the infants at 2 months, 15 infants at 6 months, and all 
infants at 12 months had one or more erupted teeth.  

Isolates from explanted dental implants: A total of 115 potential Actinomyces strains 
isolated from both nonselective media and CFAT agar were included in further testing 
including metabolic end product analyses by GLC. The isolates producing major 
succinic acid were included in identification of Actinomyces to species level using the 
biochemical identification scheme developed in Study I. Thirty-three explanted dental 
implant fixtures from 17 patients (12 males and 5 females; mean age 54 years, range 
25-74 years) with altogether 20 episodes of suspected infectious implant disintegration 
were included in this study. The fixtures were surgically removed under local 
anaesthesia and the whole fixture was vortexed to remove attached bacterial cells for 
further microbiological procedures.  
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4.4 Titanium plates (Study V) 

4.4.1 Handling procedures of the plates 

Sixteen commercial pure titanium plates (15 mm x 10 mm x 1 mm) were prepared for 
the study using a standard procedure for titanium applied in dental laboratories. Briefly, 
eight of the plates were polished (smooth surface) and the other eight of the plates 
were sandblasted (rough surface). Four rough and four smooth discs were further 
coated with bovine-serum-albumin (BSA). Bacterial suspensions corresponding to 
McFarland 0.5 turbidity were made in sterile water by harvesting three days’ growth on 
anaerobically-incubated Brucella agar plates.  The suspensions were mixed with a 
vortex mixer to avoid cell clumps and viable colony counts were determined to verify 
the quantity of bacterial cells present in the suspensions. Titanium plates were 
immersed in 4 ml of cell suspension containing approximately 1.5x107 cells/ml and 
incubated anaerobically at 35-37oC for 22 h. After incubation, the samples were 
carefully rinsed twice with PBS (0.2 M, pH 7.4) to remove loosely attached cells.  

4.4.2 Scanning electron microscopy  

Representative titanium plates each colonized with an indicated Actinomyces species 
were prepared for SEM according to a standard procedure presented in Figure 1. The 
samples were examined using a high-resolution field emission scanning electron 
microscope (FESEM-6335F, JEOL, Japan). At least six randomly chosen individual 
fields of each titanium plate were observed under FESEM, and electron micrographs 
were taken at magnification of x1,000 (sixteen micrographs) and for the purpose of 
quantification of attached Actinomyces cells x2,500 (5 x 16 micrographs). The bacterial 
cells present on each field were counted by marking each cell on computer display with 
Photoshop® and the mean number of cells in each of the five fields was determined 
and expressed as cell numbers/field.  

4.5 Statistical methods (Study V) 

Statistical analysis was performed with two-way analysis of variance. The ability of 
different Actinomyces species to adhere was compared to analyze the effect of the 
surface coating (BSA-coated or non-coated) and the surface roughness (rough or 
smooth) in these analyses. The level of statistical significance was considered to be 
<0.05.  
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5 RESULTS AND DISCUSSION 

5.1 Biochemical identification (Study I & II) 

5.1.1 Conventional testing (Study I) 

Classically, Actinomyces species have been described as branching gram-positive 
rods. However, many of them are seldom branching, but rather forming a heterogenous 
group of long or even quite short, curved or straight rods. Actinomyces is suspectible to 
special potency antimicrobial disks vancomycin and kanamycin and resistant to colistin. 
The genus can be reliably differentiated from other gram-positive non-spore-forming 
rods by their metabolic end products determined by GLC. Without the demonstration of 
succinic acid as their metabolic end product, the separation of Actinomyces, 
Arcanobacterium, and Actinobaculum from each other can be very difficult. However, 
the facilities for the measurement of metabolic end products in clinical microbiology 
laboratories are not often available.  

5.1.2 Summary of the identification table (Study I) 

Key reactions of different Actinomyces species in biochemical testing are depicted in 
Table 4. Deviating from the current literature, not only A. odontolyticus but also three 
other Actinomyces species, A. graevenitzii, A. radicidentis, and A. urogenitalis, proved 
to produce pigment on RLB agar after incubation for 5 days. Colonies of A. 
odontolyticus produced brown or purple red, those of A. graevenitzii dark, almost black, 
those of A. radicidentis brown, and those of A. urogenitalis reddish pigmentation. 
However, coinciding with the original description of A. graevenitzii (Ramos et al. 1997), 
A. graevenitzii colonies grown on Brucella agar were non-pigmented, crumpled 
colonies. Colonies of the type strain of A. radicidentis were brownish, whereas those of 
A. urogenitalis were pinkish beige on Brucella agar after 5 days of incubation 
resembling colonies of A. odontolyticus (pinkish, “old rosa”). It is noteworthy that many 
other Actinomyces strains may exhibit some brownish color after prolonged incubation 
for 6-11 days (Brander and Jousimies-Somer 1992) or when an anaerobically grown 
culture is allowed to stand aerobically at room temperature (Peloux et al. 1985). These 
are not usually regarded as real pigment production but rather a result of medium 
decomposition. Thus, growth media and incubation methods can have an impact on 
pigment production. For example, in a previous report (Kaetzke et al. 2003) where A. 
odontolyticus was grown on brain heart blood agar, pigmented colonies appeared only 
after 48 h, when they usually require 5 days of incubation to develop on Brucella agar.    

 

In a positive catalase test, the enzyme catalyses the breakdown of H2O2 with the 
release of free oxygen. Catalase production has previously been considered a key 
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characteristic for A. viscosus only. However, two additional catalase-producing 
Actinomyces species, A. neuii (Funke et al. 1994) and A. radicidentis (Collins et al. 
2000) currently exist in the genus. Pigment production and CAMP reaction are useful 
tests to confirm the separation of catalase-positive Actinomyces species (A. 
radicidentis produces pigment and A. neuii is CAMP positive). A. neuii can be further 
differentiated to subspecies level by nitrate reaction (A. neuii ssp. anitratus is nitrate 
negative whereas A. neuii ssp. neuii is nitrate positive) (Funke et al. 1994). In the 
present study, the type strain of A. neuii ssp. anitratus proved to be lipase-positive and 
A. neuii ssp. neuii lipase-negative, another distinct characteristic that may be used to 
separate these two subspecies.  

 

The developed identification scheme relies upon traditional phenotypic identification 
utilizing biochemical tests, including enzymic reactions and sugar fermentations. The 
reactions presented in the scheme are obtained from tests of both reference and 
clinical strains but also from literature, including the descriptions of individual 
Actinomyces species. The wide test pattern we developed has numerous strengths and 
it takes into account the discrepancies between different phenotypic test systems. 
Alternative molecular biology techniques are often not available in routine clinical 
microbiology laboratories. For this reason, it would be important to have phenotypic 
methods at hand enabling reliable discrimination of Actinomyces at species level. Key 
reactions achieved with conventional identification can be invaluable when confirming 
suggested identification obtained by partial 16S rRNA gene sequencing. One 
advantage of culture methods is that they enable the detection of new bacterial 
properties, e.g., pigment production, as was shown for A. graevenitzii (Study III).  

 

However, phenotypic testing of bacterial isolates is time-consuming and needs lots of 
facilities in clinical microbiology laboratories. As stated in Study I, it would be of the 
utmost importance to carefully compile the identification tables in publications and 
manuals. The method(s) by which the reactions have been obtained should be noted to 
help the interpretation of test results and allow the individual tests to be reproducible. 
Variations between the test results in the present study and previously published 
reports were mainly due to differences in enzymic activities utilized by different 
systems. The discrepancies may also be explained by different substrate specificities 
and buffering conditions in these test systems. It can be speculated whether the growth 
conditions for preparation of the inoculum are conducive or inhibitory for the synthesis 
of a specific enzyme (Bascomb and Manafi 1998). In addition, most of the schemes 
and algoritms used for identification are tested only for reference strains with 
predictable biochemical properties under optimal growth conditions (Petti et al. 2005). 
Despite the limitations, phenotypic identification seems to be a considerably powerful 
method for Actinomyces. 
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5.1.3 Commercial identification systems (Study II) 

When compared to conventional biochemical identification, our data indicate a 
relatively poor applicability of the commercially available test kits for reliable 
identification within the genus Actinomyces. When commercial kits were used in 
identification of the Actinomyces strains, approximately half of them were identified to 
the species level: 40% by RapID ANA II, 58% by Rapid ID 32 A, 26% by RapID CB 
Plus, and 65% by BBL Crystal. In previous studies, variable percentages have been 
reported: the RapID ANA II system identified 24% (Miller et al. 1995) and 85% (Brander 
and Jousimies-Somer 1992), RapID CB Plus 52% (74% with extra tests) (Hudspeth et 
al. 1998), and BBL Crystal 97% (Cavallaro et al. 1997) of the Actinomyces species 
tested. According to our experience, the main inconsistencies were encountered 
among glycosidases (�-glucosidase, �-glucosidase), sugar fermentations (glucose, 
maltose, ribose, sucrose), aminopeptidases (pyrrolidonyl aminopeptidase), and urease. 
Conventional methods, including the use of PRAS carbohydrate fermentation tests and 
individual diagnostic tablets for enzymic reactions, seemed to be more accurate, but 
much more time-consuming than the commercial kits. The commercial identification kits 
examined in this study clearly need some corrections and additional tests to their 
databases, and these kits should be developed in order to be able to identify the newly 
described Actinomyces species as well. According to the present results, commercial 
kits did not seem to offer a reliable method for identification of Actinomyces. However, 
BBL Crystal and RapID 32 A may be helpful for rapid preliminary identification of 
Actinomyces and closely related species in clinical microbiology laboratories. Despite 
the poor percentages of identification, our results are in accordance with those of 
Clarridge and Zhang (2002) showing that, although the biochemical identifications with 
commercial kits frequently indicate an inaccurate species name and poor identification, 
many of the different genogroups show distinctive and reproducible biochemical 
profiles which can be valuable in their detections. 

5.2 16S rRNA sequencing (unpublished results) 

Genotypic methods based on partial 16S rRNA sequence analysis of Actinomyces 
revealed to be a useful method for genus level identification, and it also improved the 
phenotypic identification to species level. Phenotypic identification of the isolates 
correlated with that obtained by partial 16S rRNA sequencing (similarity index �97%) 
for 44/47 (94%) isolates at the genus level and for 30/47 (64%) isolates at the species 
level. For most isolates interpreted as identified to genus level by 16S rRNA 
sequencing, a different Actinomyces species level identification was suggested by the 
database as compared to phenotypic identification. In addition, phenotypic identification 
of 7 isolates correlated with sequence identification but with lower similarity index (94-
96%). A correlation of the phenotypic and sequence-based identification at species 
level was in most cases obtained with A. israelii and A. naeslundii. Probably due to 
insufficient database, many A. odontolyticus isolates were identified as A. meyeri as the 
first choice. When partial sequencing was used in identification of Actinomyces, 
additional biochemical testing was needed to confirm the identification at species level. 
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Public databases, such as the GenBank, are used to analyze sequencing results for 
identification. However, this bring us many problems: 1) quality of entries in 
GenBank is compromised by sequencing errors, incomplete sequences, and 
insufficient strain characterization (Drancourt et al. 2000; Patel 2001; Boudewijns et al. 
2006), 2) there are no universially accepted data on how to interpret sequence-based 
results, 3) the length of sequenced part of the gene (400-500 bp) includes some 
restrictions. Taking these aspects into account, it would be reasonable to use partial 
16S rRNA sequencing primarily as an adjunct to phenotypic key methods and the 
results of partial sequencing should be interpreted together with phenotypic results.  

5.3 Oral Actinomyces in infants (Study III) 

Already at the age of 2 months, Actinomyces species were detected in the edentulous 
oral cavity. The frequency and number of species increased in proportion with age: 
30% of the 39 infants at 2 months but 97% at 2 years of age were positive for salivary 
Actinomyces. As seen in Fig. 2, A. odontolyticus was the most predominant 
Actinomyces colonizer on all five sampling occasions. Similar frequencies were found 
in 19 predentate and 13 dentate infants at 6 months (59% and 41%, respectively). This 
is contradictory to the study of Cole et al. (1998) who failed to detect any Actinomyces 
species prior to four months after tooth eruption and no A. odontolyticus during the 
study period (mucosal surface samples from infants between the age of 2 - 24 months). 
On the other hand, Ellen (1976) detected catalase-negative Actinomyces in 40% of 
predentate infants, and due to limited identification properties at that time, these 
isolates may have been A. odontolyticus. The results of the present study suggest that 
tooth surfaces or gingival crevices are not prerequisites for colonization of A. 
odontolyticus, but rather mucosal surfaces which serve as the initial colonization site 
and reservoir for other oral sites (Gibbons 1989; Frisken et al. 1990; McClellan et al. 
1996). Intrestingly, in the study by Könönen et al. (2003), Actinomyces species were 
only occasionally present in infants’ nasopharynges during health, but were dominating 
species frequently isolated from nasopharyngeal aspirates during acute otitis media 
episodes. Whether these species colonize the nasopharynx due to environmental 
changes during infection or whether they have a role in the pathogenesis of acute otitis 
media, is not yet known. Actinomyces species are also known to colonize tonsillar 
crypts in adulthood (Brook and Foote 1997; Toh et al. 2006), and they may also 
colonize the mucosal surfaces of tonsils in infants soon after birth (Cole et al. 2004). 
Interestingly, among patients with peritonsillar and retropharyngeal abscesses, the 
most common Actinomyces species has been A. odontolyticus (Civen et al. 1993; 
Jousimies-Somer et al. 1993), thus emphasing its colonizing role at mucosal surfaces.  
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Figure 2. Prevalence rates of oral Actinomyces species in 39 children between 
the age of 2-24 months 
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First recoveries of A. viscosus were from 6-month-old infants and those of A. naeslundii 
from 12-month-old infants. However, the proportional distribution of A. naeslundii was 
higher than that of A. viscosus during the second year of life. Both infants positive for A. 
viscosus at 6 months had at least one erupted tooth. This coincides with the previous 
observation by Ellen (1976) that the colonization of A. viscosus is delayed until teeth 
have erupted. Tooth surface with salivary pellicle of enamel surface seems to be an 
ideal environment for the initial adhesion of A. naeslundii and A. viscosus. In the study 
by Mager et al. (2003), A. odontolyticus was found in significantly higher proportions in 
saliva and specific parts of the tongue compared to other sites, such as attached 
gingiva in healthy adults. On the other hand, the same study demonstrated that A. 
naeslundii and A. viscosus colonize teeth at far greater proportions than soft tissues. 

 

As described in the literature, receptor specificities of bacterial cell-surface adhesins 
might determine the abilities of A. odontolyticus, A. naeslundii, and A. viscosus to 
colonize different oral sites correlating with the binding specificities of each species to 
beta-linked galactosamine and acidic proline-rich protein structures (Strömberg and 
Boren 1992; Hallberg et al. 1998). In addition to initial adhesion to oral surfaces, 
specific associations between Actinomyces species and subsequently colonizing 
bacteria have been identified suggesting further contribution to biofilm development 
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(Palmer et al. 2003; Foster and Kolenbrander 2004; Jakubovics et al. 2005). Könönen 
et al. (1994; 1999) indicated that anaerobic bacterial species have a different 
suspectible time for their colonization, probably due to interrelationships in the bacterial 
succession.   

 

The use of our comprehensive identification test arrays enabled characterization of 
early colonizing Actinomyces species in infants’ mouths A. odontolyticus being the 
most prominent colonizer followed by A. naeslundii and A. viscosus.  The developed 
scheme also resulted in novel observations of A. graevenitzii, A. gerencseriae, and A. 
georgiae isolated from the oral cavity in infancy. A. graevenitzii was isolated from 
infants’ saliva from 6 months of age onwards. The four previous A. graevenitzii strains 
in the original description (Ramos et al. 1997) were mainly isolated from respiratory 
tract secretions, and most probably were of oral origin. 

5.4 Actinomyces findings in failed dental implant fixtures (Study IV) 

Actinomyces was nearly ubiquitous finding in failed implants being present in 94% of 
the 33 explanted fixtures. This was not surprising, since Actinomyces species are 
considered to be initial colonizers on tooth surface particularly related to the 

accumulation phase of plaque development (Liljemark et al. 1993). Bacterial 
attachment and plaque accumulation is also considered as a key factor in the 
pathogenesis of biomaterial-associated infections leading to possible failure of implants 
(Gristina 1987). Several reports on infections connected with intrauterine contraceptive 
devices and prosthetic hip joints with Actinomyces have been published (Yoonessi et 
al. 1985; Wust et al. 2000; Zaman et al. 2002; Elsayed et al. 2006). Besides 
Actinomyces, other common findings in the present study were Fusobacterium species, 
pigmented Prevotella and anginosus group streptococci, being isolated from 85%, 76% 
and 73% of the implants, respectively. In the study of Gerber et al. (2006), the most 
prevalent species in plaque on implant surfaces (curette samples from implant 
surfaces) consisted of streptococci, Veillonella, Capnocytophaga, Fusobacterium, and 
Neisseria, as well as periodontal pathogens P. gingivalis, A. actinomycetemcomitans, 
and Actinomyces. Little is known about the mechanisms of bacterial interactions on oral 
implant surfaces. As Actinomyces are known to co-aggregate with most of the above 
mentioned species during plaque formation (Kolenbrander and Phucas 1984; 
Kolenbrander and Andersen 1986; Kolenbrander 1988), it can be speculated that same 
kinds of partnerships are also valid in the environment around implants. Implants are 
known to frequently become colonized by opportunistic bacteria that form biofilms on 
these implant surfaces (Costerton et al. 1999; Costerton et al. 2005). 

 

Classically, the microbiota of failed implants has been considered to be very similar to 
that of periodontitis, and many studies have focused only to detect periodontal 
pathogens from these implant sites. Numerous studies have reported microbial findings 
in failing dental implants (Mombelli et al. 1988; Becker et al. 1990; Leonhardt et al. 
1993; Keller et al. 1998; Leonhardt et al. 1999; Grossner-Schreiber et al. 2001; 



 

28 

Leonhardt et al. 2002; Buchmann et al. 2003; Gerber et al. 2006). However, the 
interpretation and comparison of these bacteriological data is very difficult or almost 
impossible because various methods have been used for bacteriological analyses. 
Samples in reported studies have been collected from the depth of peri-implant sites by 
using paper points or curettes. In addition, gingival crevicular fluid (GCF) samples from 
implants have been reported (Gerber et al. 2006). However, according to our 
unpublished observations, the implant fixture seems to be 100-1000 times more 
effective as a sampling material compared to scoop samples in terms of qualitative and 
quantitative yields of cultivable bacterial groups and species. In the present study, each 
fixture was explanted and then used for bacteriological investigation as a whole, thus 
enabling us to investigate the true bacterial attachment to the implant surface. Also, the 
timeframe between the insertion of an implant and infection can affect the detection of 
bacteria: samples have been taken between 0 months to 10 years after implant 
insertion (Mombelli et al. 1988; Hultin et al. 2000). Factors, such as time of implant 
loading and the status of remaining dentition, seem to reflect strongly the composition 
of implant microbial complexes.   
 
In the present study, A. odontolyticus was by far the most prominent and frequent 
Actinomyces species found, the frequency of detection being as high as 79% in the 
examined 33 failed implant fixtures. This is in line with the finding of A. odontolyticus as 
the predominant Actinomyces species in early plaque formation on tooth surfaces 
(Liljemark et al. 1993) and on oral mucosal surfaces of infants (Study III). A. 
odontolyticus may also play a significant role in the early stages of biofilm formation on 
dental implant surfaces. Interestingly, a significant increase of A. odontolyticus cells in 
subgingival plaque was observed in edentulous patients with failing implants 
(periimplant pocket depth of �6 mm and pus formation) compared to those with 
successful implants (Mombelli et al. 1988). Also in edentulous patients, the presence A. 
odontolyticus correlated with probing depth in 18 implants (Mombelli and Mericske-
Stern 1990). In these cases A. odontolyticus must have been of mucosal surface origin 
confirming our finding that tooth surface is not a prerequisite for A. odontolyticus (Study 
III). Further, in a review on infections caused by A. odontolyticus (Peloux et al. 1985), it 
was presented that other mucous membranes than those in the mouth carry this 
specific organism. Lower detection rates for A. odontolyticus, A. naeslundii, and A. 
viscosus in peri-implant sites were reported by Rutar et al. (2001) than the 
corresponding rates presented in our study (36% vs.79%, 19% vs. 30% and 17% vs. 
30% respectively). Their lower rates may be explained by a different sampling method, 
i.e., paperpoint sampling, which may not be optimal for detecting attached cells. Also, 
an interesting finding was observed in the study by Keller et al. (1998), who detected A. 
naeslundii from peri-implant microbiota only from pockets � 4mm. Gerber et al. (2006) 
compared bacterial plaque samples collected from titanium implant and tooth surfaces. 
A. naeslundii was detected with almost similar frequencies on both surfaces, whereas 
detection rates of A. odontolyticus and A. israelii were higher on implant than tooth 
surfaces. Bacteria that cause implant-associated infections live in well-developed 
biofilms (Costerton et al. 1999). These infections are considered multi-species rather 
than caused by a single species (e.g., a periodontal pathogens). By reducing the 
number of initially adhering species, such as Actinomyces and streptococci, on these 
surfaces would make it possible to minimize early plaque formation and subsequent 
inflammation in implant-surrounding soft tissues.  
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5.5 Adhesion of Actinomyces to titanium plates (Study V) 

All tested Actinomyces species adhered to all differently processed Ti surfaces. 
However, both the degree of surface roughness and albumin coating of titanium 
revealed significant differences (p<0.05) between different Actinomyces species 
regarding their adhesion to titanium. The most prominent colonizer on various titanium 
surfaces was A. meyeri. These findings are in line with previous observations that 
different oral bacteria attach to surfaces in a selective manner (Gibbons and van Houte 
1975; Mabboux et al. 2004). As suggested by Ellen (1976) and Gibbons (1989), the 

members of the genus Actinomyces may differ in their selectivity in adhering onto oral 
surfaces. According to present results, this also seems to be the case concerning 
titanium surfaces.  

 

Initial bacterial adhesion is affected by many factors, including bacterial characteristics, 
environmental factors (e.g. the presence of serum proteins), and material properties of 
the target surface (Brecx et al. 1983; An and Friedman 1998). Roughening of the 
surface increases the area available for adhesion, creating pits and grooves, therefore 
providing favorable sites for colonization (Nakazato et al. 1989; Bollen et al. 1996).  
However, it is still unclear whether all early-colonizing species prefer rough and 
irregular areas for initial adhesion and how the adhesion mechanisms change under 
different conditions (e.g., subgingivally located titanium surface of an implant). In the 
present study, an uncoated, smooth titanium surface promoted the adhesion of A. 
israelii and A. meyeri, whereas in the presence of BSA A. israelii and A. meyeri showed 
the highest numbers of adhered cells on rough surface. A. naeslundii preferred the 
smooth surfaces, with the highest numbers of adhered cells being present on the BSA-
coated surface. A. odontolyticus preferred the rough surfaces. 

 

The presence or absence of BSA-coating had a significant effect on the adhesion of A. 
naeslundii, A. meyeri, and A. israelii. BSA had a promoting effect on rough surfaces for A. 
israelii and A. meyeri, and on both smooth and rough surfaces for A. naeslundii. This 
illustrates the diversity of adhesion mechanisms of these species to biomaterials. The 
interaction effects were significant with A. meyeri and A. israelii: the effect of BSA was 
dependent on the roughness of the target surface. These results showing a stimulating 
effect of albumin coating were unexpected because human serum albumin has proved to 
be an effective method in preventing bacterial adhesion on implant materials (An et al. 
1996; An et al. 1997). Albumin is known to be an acidic protein and capable of reducing 
the substrate surface hydrophobicity, showing strong inhibitory effects on bacterial 
adhesion (Reynolds and Wong 1983; Brokke et al. 1991; An and Friedman 1998). 
However, according to our results, the effects of BSA seemed to depend on bacterial 
species and strains. Coating with BSA reduced the numbers of A. odontolyticus cells 
found on both smooth and rough surfaces. Our studies suggest that A. odontolyticus has 
unique binding sites to adhere on titanium. The species is known to exhibit a genetically 
related, but functionally distinct adhesin, which is structurally different from fimbriae 
(Hallberg et al. 1998) . 
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Initial adhesion of four different Actinomyces species to titanium surfaces was the main 
focus of the present study. Initial adhesion of early colonizing species is known to be 
the preliminary stage in the further development of multi-bacterial biofilms where 
coaggregation, co-adhesion, and competition between bacterial species largely 
influence plaque formation in vivo. Therefore, an in vitro experiment, such as the 
present one, has it limitations when studying adhesion properties. Exposure of only one 
Actinomyces species to titanium surface without other species contributing to biofilm 
formation differs from a true clinical situation. However, studies on initially adhering 
organisms are of great importance, because the formation of plaque within the first 
hours occurs with these adhered Actinomyces species (Li et al. 2004). Further, a 
surface capable of stimulating or inhibiting the initial adhesion of early species, such as 
Actinomyces (which can ultimately influence the succeeding stages of plaque biofilm 
formation via their coadhesion properties), may be crucial to developing biofilm on 
biomaterial surfaces.  
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6 KEY FINDINGS AND CONCLUSIONS 

Study I, II, unpublished 
The developed phenotypic scheme with advanced diagnostic methods will be valuable 
asset in clinical laboratories for species level identification of the genus Actinomyces. 
Although the identification of these gram-positive rods may pose major problems, it is 
important to characterize Actinomyces to species level to increase the knowledge of 
their natural habitats and clinical associations.  

When compared to conventional phenotypic methods, considerable inconsistency 
existed in the ability of commercial kits to identify Actinomyces species. None of the 
examined commercial test systems was able to identify all Actinomyces correctly. Lack 
of updated information in databases interfered with precise identification rendering the 
methods unreliable for species level identification.  

Partial 16S rRNA sequence analysis increased the accuracy of identification of 
Actinomyces to species level. However, due to problems in interpretation and quality of 
current databases, this method may only be reliably used as an adjunct to phenotypic 
methods.  

 

Study III 
Actinomyces species were found in edentulous infants at 2 months of age, A. odontolyticus 
being the most prominent species. The frequencies of A. naeslundii, A. viscosus and A. 
gerencseriae increased with age after the second half of the first year. This suggests that A. 
odontolyticus is an inhabitant of mucosal surfaces whereas tooth surfaces are prerequisites 
for other oral Actinomyces species. Different Actinomyces species seem to find unique 
niches of colonization at a time convenient for them.  

 

Study IV 
Actinomyces species formed a major part of bacterial species isolated from failed 
dental implant fixtures. A. odontolyticus was the most prominent finding. This may 
suggest that A. odontolyticus is a primary colonizer on failed implant surfaces as a part 
of multispecies bacterial community.  

 

Study V 
Distinct Actinomyces species differed significantly in their adherence onto various 
titanium surfaces. Surface roughness and albumin coating had significant effects on the 
adhesion. This may confirm previous results that different Actinomyces species adhere 
in a selective manner onto oral surfaces.  
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