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INTRODUCTION 

 
Streptococcus pneumoniae (pneumococcus) continues to be a leading cause of 

morbidity and mortality worldwide. Along with a number of invasive infections such as 

pneumonia, meningitis and sepsis, pneumococcus causes local infections such as 

sinusitis and acute otitis media (AOM). Although usually a self-healing infection, AOM 

is a marked health problem among infants and young children resulting in a burden on 

health services and respectable inconvenience for the young patients and their families.  

 

Mucosal surfaces of the human upper respiratory tract are the primary site of a 

pneumococcal (Pnc) infection. Local mucosal immunity is likely to act as an important 

first line defense against Pnc carriage and subsequent disease. The recurrent nature of 

Pnc AOM, however, indicates that the natural immune responses in early childhood are 

not strong enough to offer effective protection against Pnc infection. Mucosal immune 

responses induced by systemic immunization are modest, but stronger local antibody 

responses could be accomplished by mucosal (e.g., intranasal) immunization. The 

results gathered from animal models concerning mucosal immunization against 

pneumococcus have been encouraging. However, more basic research will be required 

before considering such applications in humans. This research includes the 

characterization of the development of natural mucosal immunity to various Pnc 

antigens. 

 

The vaccine development against pneumococcus begun a long time ago and it still 

continues. The Pnc 23-valent capsular polysaccharide (PS) vaccine is efficacious among 

healthy adults, but it induces poor antibody responses in young children. Covalent 

conjugation of Pnc PS antigens to a protein carrier has improved their immunogenicity 

in children. However, the serotype selection of Pnc conjugate vaccines is restricted and 

the protection against overall Pnc AOM incidence is therefore modest. These realities 

have stimulated an interest in the development of vaccines based on common Pnc 

protein antigens. The crucial information still lacking, is whether human mucosal 

antibodies to Pnc protein vaccine candidates would have a role in the prevention of Pnc 

diseases. 

 



 

 

8

 
 

The Finnish Otitis Media (FinOM) Cohort Study was originally conducted to examine 

the risk factors and epidemiology of Pnc carriage and AOM. During the study, 329 

Finnish children were followed from 2 to 24 months of age. As a secondary endpoint, 

this allowed the investigation of the natural development of mucosal immunity to 

pneumococcus. To this end, the development of salivary antibodies to the selected Pnc 

protein and PS antigens has been examined in this thesis. In addition, the association 

between salivary antibodies to Pnc proteins and the risk of subsequent Pnc carriage and 

AOM has been evaluated. 
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REVIEW OF THE LITERATURE 

 

1. Streptococcus pneumoniae 

 
1.1. General description 

Streptococcus pneumoniae is an exclusively human pathogen, which was isolated for 

the first time over 120 years ago, in 1881. Before the era of antibiotics, Pnc diseases, 

particularly Pnc pneumonia, were common causes of death. Nowadays, pneumococcus 

continues to be an important cause of both mucosal and systemic diseases worldwide. 

Pneumococcus has been the subject of intensive investigation for many decades. This 

has generated many scientific discoveries, including the comprehension of DNA being a 

carrier of genetic information (Avery et al. 1944), the therapeutic efficacy of penicillin 

(Abraham et al. 1941; Keefer et al. 1943), the role of the bacterial capsule in resistance 

to phagocytosis (Issaef 1893), and the ability of bacterial polysaccharides (PS) to induce 

protective antibodies (Felton et al. 1955; Baker 1990). Despite all intensive 

investigation, many questions concerning the mechanisms of the Pnc pathogenesis and 

the immunology against Pnc infections still remain to be answered. Furthermore, a new 

challenge is now being faced by the appearance and spread of Pnc strains, which are 

resistant to one or more antibiotic drugs. 

 

Pneumococcus is a gram-positive, encapsulated, facultative anaerobic, lancet-shaped 

coccus, which usually grows in pairs or in short chains. The three major surface layers 

that can be distinguished on the surface of pneumococci are plasma membrane, cell 

wall, and PS capsule. On the basis of the differences in the structure of the PS capsule, 

pneumococci can be divided into more than 90 different serogroups or serotypes. Two 

nomenclature systems have been used to classify these types. In the American 

nomenclature, the serogroups or serotypes are designated in the order of their discovery. 

In contrast, in the Danish nomenclature, the serogroups or serotypes are designated 

according to the structural and antigenic characteristics of the capsule, e.g., the 

serologically cross-reactive serotypes 6A and 6B are placed in the same serogroup 6 

(Lund et al. 1978). Nowadays, the Danish nomenclature is more widely adopted. The 

Danish nomenclature was used in the present study.  
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The complete DNA sequence of S. pneumoniae (serotype 4 from a child with 

meningitis) was published for the first time in November 1997. The opportunity to 

exploit the whole genome sequence of pneumococcus should allow the rapid discovery 

of regulatory networks and therapeutic targets for this pathogen, as well as new 

candidates for vaccine development (Baltz et al. 1998; Hoskins et al 2001; Tettelin et 

al. 2001; Wizemann et al. 2001). 

 

1.2. Identification of pneumococcus 

The laboratory culture of pneumococci requires multiple nutritional factors, carbon 

dioxide (CO2) and an ideal pH of 7.2 to 7.4. On solid media pneumococci grow 

characteristically as flat round colonies with depressed centers. When grown on media 

containing blood, partial α-hemolysis of surrounding erythrocytes is detected. The 

identification of isolates with appropriate colonial morphology can be performed with a 

number of conventional biochemical and/or immunochemical tests, and in most cases 

the identification of pneumococci is rather straightforward. At the moment, however, no 

“gold standard” method is available for the identification of pneumococci. 

 

The conventional methods for the identification of pneumococcus are based on optochin 

sensitivity and bile solubility of the organism. Sensitivity to optochin 

(ethylhydrocupreine; a derivative of quinine) is the most important identification 

criterion for pneumococcus (Lund & Henrichsen 1978; Ruoff et al. 1999). On the plate 

inoculated with pneumococci, an inhibition zone appears around the optochin disk. This 

test is the most frequently used method to identify pneumococci in clinical laboratories 

(Kaijalainen et al. 2002). As an additional test, the bile solubility test can be used to 

confirm the result. Addition of bile salts on a broth culture of pneumococci results in 

prompt dissolution of the bacteria due to the activation of peptidoglycan degrading 

autolysin enzyme. The other α-hemolytic streptococci are generally resistant to 

optochin and bile insoluble. 

 

The presence and type of the Pnc PS capsule can be determined by using several 

immunochemical tests. The capsular swelling reaction (Neufeld’s quellung reaction) is 

an old-time, but still useful method to identify Pnc isolates rapidly and with high 

certainty. Equal volumes of a bacterial suspension, methylen blue and antiserum are 

mixed on a glass slide, and the bacteria are examined under a light microscope. 
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Appearance of capsular swelling identifies genus, species and serotype. The presence of 

capsular PS can also be established by immunochemical methods, e.g. latex 

agglutination and counterimmunoelectrophoresis (CIEP). Furthermore, several rapid 

tests are also available for the identification of Pnc antigens directly in clinical samples, 

e.g., in blood, sputum, urine and cerebrospinal fluid (CSF).  

 

In the 1990s, new possibilities for the identification of pneumococcus were introduced 

by the development of novel gene amplification methods for detection of pneumococci 

directly from the clinical samples (Virolainen et al. 1994; Salo et al. 1999; Toikka et al. 

1999; Lawrence et al. 2003; Murdoch et al. 2003). For example, demonstration of the 

gene for the Pnc virulence protein pneumolysin (Ply) by polymerase chain reaction 

(PCR) method has been used to detect and identify pneumococci in reference 

laboratories (Salo et al. 1995; Kearns et al. 2000). The PCR analysis for the gene of Pnc 

surface protein A (psaA) has shown to be a sensitive tool for diagnosis of Pnc 

pneumonia (Scott et al. 2003). Hybridization methods have also been used for the 

identification of pneumococcus (Pozzi et al. 1989; Fenoll et al. 1990). Furthermore, the 

molecular characterization of Pnc isolates by multilocus sequence typing (MLST) has 

now become available (Enright et al. 1998; Meats et al. 2003). The above-mentioned 

methods, however, have not yet been introduced in routine use for the identification of 

Pnc isolates. 

 

 

2. Pneumococcal infections 
 

2.1. Nasopharyngeal carriage 

S. pneumoniae is frequently present in the upper respiratory tract of healthy children 

and adults as a member of the normal nasopharyngeal bacterial flora. The bacteria 

spread from person to person in droplets of respiratory secretions (Figure 1). 

Pneumococci adhere to their receptors on the surface of the mucosal cells of the 

recipient and subsequently colonize the nasopharyngeal epithelium. The balance 

between the virulence factors of the colonizing pathogen and the defense mechanisms 

of the host leads to an asymptomatic carriage state, which is the prevailing outcome of 

Pnc encounters. This is presumably how S. pneumoniae manages to persist as a human 
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parasite. Pnc disease is rarely associated with prolonged nasopharyngeal carriage of a 

particular Pnc type. Instead, Pnc disease is usually caused by recently acquired strains 

(Gray et al. 1980). It has been suggested that a prolonged carriage of one Pnc type may 

even be beneficial to the individual in preventing colonization by other types (Gwaltney 

et al. 1975). Multiple Pnc serotypes may be carried concomitantly (Loda et al. 1975). In 

this thesis, the terms “carriage” and “colonization” are used synonymously. 

 

2.1.1. Epidemiology of pneumococcal carriage 

The human nasopharyngeral flora is established gradually during the first year of life 

(Aniansson et al. 1992). Almost half of the children in industrialized countries, such as 

Sweden and the U.S., are colonized with pneumococci at least once by the age of one 

year (Aniansson et al. 1992; Faden et al. 1997). In a study conducted in Birmingham, 

Alabama, the first Pnc type was acquired by a mean age of six months (Gray et al. 

1980). Pnc carriage involves relatively few of the more than 90 different Pnc 

serogroups/types circulating. In industrialized countries, the most frequent serogroups 

isolated from the nasopharynx in young children are 6, 14, 19 and 23 (Gray et al. 1980; 

Prellner et al. 1984a; Syrjänen et al. 2001). These pediatric types are also related to 

most cases of Pnc AOM and invasive disease in children in these areas (Austrian et al. 

1977; Gray et al. 1979; Eskola et al. 1992; Sniadack et al. 1995; Kilpi et al. 2001).  

 

Nasopharyngeal carriage rates of S. pneumoniae vary by geographic location and 

population. The average carriage rates in children are 40 to 50% and in adults 20 to 30% 

(Ghaffar et al. 1999). In children, Pnc carriage rates are highest during the first two 

years of life and start to decrease gradually after the age of 3 to 5 years (Hendley et al. 

1975; Loda et al. 1975; Ingvarsson et al. 1982; Syrjänen et al. 2001). The 

nasopharyngeal carriage rate in children in developing countries is generally 2 to 3 

times higher than that found in industrialized countries (Greenwood 1999). High Pnc 

carriage rates in children have been recorded in several developing countries including 

Zambia (Frederiksen et al. 1988), Pakistan (Mastro et al. 1993), The Philippines 

(Lankinen et al. 1994) and The Gambia (Lloyd-Evans et al. 1996). In Papua New 

Guinea all children are intensively and persistently colonized with pneumococcus 

already within the first 3 months of life (Gratten et al. 1986; Montgomery et al. 1990). 

Also, Australian aboriginal infants are at a high risk for Pnc carriage (Leach et al. 

1994). In industrialized countries, such as Sweden, the U.S. and Finland, slower rates of 
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acquisition and carriage have been reported (Aniansson et al. 1992; Faden et al. 1997; 

Syrjänen et al. 2001). The reasons for the differences between various populations are 

not fully understood. 

 

The duration of Pnc carriage is dependent on age and Pnc serotype. The duration of 

carriage in children is generally longer than in adults (Ekdahl et al. 1997). The pediatric 

types are carried significantly longer compared to the other types (Gray et al. 1980), 

which may be linked to the poor immunogenicity of these types (Klein 1981; Douglas et 

al. 1983). In a study of infants conducted by Gray et al. (1980), the duration of carriage 

was serotype dependent being usually between 2.5 and 4.5 months (range: 1 to 17 

months) during the first two years of life. In Swedish children, the duration of carriage 

has been reported shorter, the median duration being 19 days (Ekdahl et al. 1997). In 

adults, the average duration of Pnc carriage is 6 weeks (Musher 1992). 

 

Several factors affect carriage of S. pneumoniae. Young age (<2 years) is associated 

with an increased risk of Pnc carriage. This is probably best explained by the close 

contacts between young children and their poorly developed immunity to this organism. 

The importance of family composition in acquiring nasopharyngeal carriage is clearly 

established: infants having older siblings have their first acquisition earlier and acquire 

slightly more serotypes compared to infants who do not have any siblings (Gray et al. 

1980; Leino et al. 2001). In several studies, significantly increased nasopharyngeal 

carriage has been reported in children with a day-care contact - either via their siblings 

or theirselves (Rosen et al. 1984; Aniansson et al. 1992; Dagan et al. 1996b). In a 

Finnish study, however, day care was not associated with an increased risk of Pnc 

carriage during the first two years of life (Leino et al. 2001). Pnc carriage increases in 

winter (Gray et al. 1980, 1982). This is most likely related to closer interpersonal 

contacts and the viral upper respiratory tract infections that are more frequent during 

winter months. Higher carriage rates have been reported during episodes of respiratory 

tract illnesses and AOM than during health (Faden et al. 1991; Syrjänen et al. 2001). 

 

2.1.2. The composition of nasopharyngeal flora 

The colonization of the nasopharynx is a dynamic process and the nasopharyngeal 

bacterial flora is in a constant state of flux. Factors controlling the trafficking of bacteria 

into and out of the nasopharynx are poorly understood. While the nasopharynx is 
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predominantly colonized with avirulent bacteria (e.g., viridans streptococci, 

nonhemolytic streptococci, diphtheroids, Neisseria species), potential middle ear 

pathogens may also be carried asymptomatically. The most common bacterial species 

causing AOM such as S. pneumoniae, Haemophilus influenzae, and Moraxella 

catarrhalis seem to belong to the normal flora of the nasopharynx both in healthy and 

otitis prone children (Ingvarsson et al. 1982; Freijd et al. 1984; Prellner et al. 1984a; 

Stenfors et al. 1990; Syrjänen et al. 2001). A significant relationship between Pnc 

colonization and AOM has been documented, emphasizing the importance of the 

nasopharynx as a reservoir for potential middle ear pathogens (Zenni et al. 1995; 

Syrjänen et al. 2001, 2002). In the nasopharynx of the youngest children the most 

common pathogens are S. pneumoniae and M. catarrhalis, while the frequency of H. 

influenzae increases after the first year of life (Aniansson et al. 1992). The frequency of 

pathogens decreases with increasing age (Ingvarsson et al. 1982; Stenfors & Räisänen 

1990), which may be due to an increased immunity against these bacteria. The 

composition of microflora in the nasopharynx may influence the outcome of Pnc 

carriage facilitating or impeding Pnc colonization and invasion by symbiosis or 

competition.  

 

2.1.3. Antibodies and pneumococcal carriage 

Colonizing pneumococci may stimulate an immune response that eventually eliminates 

them. The importance of this immune response is suggested by the observation that the 

duration of carriage is longer in children than in adults. The duration of Pnc carriage 

with the poorly immunogenic serogroups, such as 6 and 23, tends to persist longer in 

children than carriage with the immunogenic groups. Thus, the high incidence of Pnc 

carriage and AOM in infants and young children partly may be explained by their 

immature immunity to S. pneumoniae compared with adults (Lindberg et al. 1993).  

 

The factors of both mucosal and systemic immunity probably play important roles in the 

defense against Pnc carriage, and the immune status of the host is an important 

determinant for the prevalence and duration of Pnc carriage. An important specific host 

factor interrupting nasopharyngeal colonization is suggested to be the production of 

secretory IgA (sIgA). Nasopharyngeal secretions with sIgA antibody activity against S. 

pneumoniae have been shown to interfere with Pnc adherence to mucosal epithelial 

cells in vitro (Kurono et al. 1991). The pre-existing type-specific serum antibodies do 
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not prevent acquisition of homotypic S. pneumoniae, but they have been suggested to 

shorten the duration of Pnc carriage (Gwaltney et al. 1975). Carriage of a particular Pnc 

serotype for a prolonged period does not seem to induce sufficient local or systemic 

immunity to prevent a subsequent reacquisition of that serotype (Loda et al. 1975). 

 

2.1.4. Interventions to decrease the carriage rates 

Nasopharyngeal carriage of S. pneumoniae is the first step in the development of Pnc 

disease. Thus, different interventions have been tried or proposed to decrease Pnc 

carriage rates. Immunization with Pnc conjugate vaccines has resulted in the reduction 

of carriage of the vaccine-type pneumococci in infants (Douglas et al. 1986; Obaro et 

al. 1996; Dagan et al. 1996a, 1997; Mbelle et al. 1999). However, serotype replacement 

by non-vaccine type pneumococci in carriage has raised concern (Mbelle et al. 1999; 

Lipsitch et al. 2000). 

 

Many viral and bacterial respiratory pathogens bind to carbohydrate receptors on the 

respiratory mucosa. In mucosal secretions, such as saliva, tears, urine, sweat and breast 

milk, occur natural oligosaccharides that bind to the carbohydrate-binding proteins of 

the microbial pathogens preventing their attachment. Andersson et al. (1986) 

demonstrated that a human milk oligosaccharide could inhibit the binding of S. 

pneumoniae to human nasopharyngeal and oropharyngreal cells. A novel approach to 

decrease Pnc carriage has been the oligosaccharides that are structural analogues of the 

epithelial receptor for Pnc attachment. These sugars have been shown to be able to 

inhibit bacterial adhesion and even detach bacteria that have already attached to 

pharyngeal cells (Cundell et al. 1995a). Zopf and Roth (1996) described the potential of 

large-scale manufacture of human oligosaccharides for use in studies of prevention of 

various infectious diseases including AOM. These oligosaccharides have been 

demonstrated promising in protection against Pnc infections in animal models 

(Idänpään-Heikkilä et al. 1997). However, the intranasal administration of an 

oligosaccharide 3'-sialyllacto-N-neotetraose in Finnish children did not have a 

beneficial effect on the nasopharyngeal carriage of bacteria or on the occurrence of 

AOM (Ukkonen et al. 2000). 
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Figure 1. Natural history of diseases caused by Streptococcus pneumoniae. 

 

 

2.2. Pneumococcal diseases 

Pneumococci cause a wide variety of diseases, ranging from mild mucosal to life-

threatening invasive diseases. Pneumococci cause diseases primarily near by their 

normal residence that is the upper respiratory tract. Clinical illness follows the spread of 

pneumococci to surrounding tissues from the nasopharynx. Pneumococci are a primary 

cause of pneumonia, meningitis and bacteremia in children and pneumonia in adults. 

The symptoms of all Pnc diseases are primarily due to the ability of the bacteria to 

evoke an intense inflammatory response, either locally or systemically. Pneumococci 

reach their target within the body either by direct extension from colonized mucosal 

surfaces causing sinusitis, AOM (Tuomanen 2000), and pneumonia (Tuomanen et al. 

1995; Novak et al. 1998a), or by hematogenous spread causing sepsis and meningitis 

(Cundell et al. 1995a; Sande et al. 1999) (Figure 1). Despite the availability of effective 

antimicrobial drugs, the mortality in serious Pnc diseases remains high. 
 

2.2.1. Epidemiology of pneumococcal diseases 

2.2.1.1. The incidence of pneumococcal diseases 

The most important factor determining the risk for Pnc disease is probably age and 

persons in the extremes of age are the high-risk groups for Pnc diseases. The incidence 
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of Pnc diseases is highest in infants under two years of age and in persons over 60 years 

of age. The risk of Pnc disease is increased in patients with predisposing conditions, 

including asplenia (Wara 1981), chronic medical conditions (such as underlying chronic 

cardiovascular disease, chronic obstructive lung disease and diabetes mellitus) (Lipsky 

et al. 1986; Taylor et al. 1999), alcoholism (Lipsky et al. 1986), or immunosuppressive 

illnesses, particularly human immunodeficiency virus (HIV) infection (Janoff et al. 

1997). Cigarette smoking is a strong independent risk factor for Pnc disease among 

immunocompetent, nonelderly adults (Nuorti et al. 2000). A highly increased risk of 

Pnc disease has been reported in certain populations. Exceptionally high rates of disease 

are seen among the Alaskan native population (Davidson et al. 1989), North American 

Indians (Cortese et al. 1992) and Australian aboriginals (Torzillo et al. 1995). 

 

The impact of Pnc disease is profound especially in developing countries, where the 

incidence of Pnc pneumonia and invasive diseases in children is several times higher 

than in industrialized countries (Hausdorff et al. 2000b). Not much data is available on 

the burden of Pnc AOM in children or that of Pnc pneumonia in adults in the 

developing world (Hausdorff et al. 2000a). In industrialized countries, Pnc AOM is a 

very prevalent disease in infants and young children, and Pnc pneumonia is an 

important cause of morbidity and mortality among the elderly population (Feldman 

2001). The discrepancy between the developing and industrialized countries originates 

probably from socio-economic differences, but genetic risk factors associated with 

racial group (e.g., sickle cell disease) may also play a role. The incidence of Pnc disease 

is higher in black than in white populations. In certain countries the HIV epidemic has 

substantially increased the burden of Pnc disease (Gilks 1993; Madhi et al. 2000).  

 

2.2.1.2. Distribution of pneumococcal serotypes 

All Pnc capsular types are potentially able to cause disease, but the frequency with 

which different types are isolated in disease manifestations is remarkably different. 

Certain types are responsible for the majority of diseases. For instance, in young 

children, a relatively small number of Pnc serogroups account for most of Pnc disease. 

The Pnc types/groups 6, 14, 19 and 23 have been shown to be responsible for a large 

proportion of both invasive and local Pnc diseases in children. (Gray et al. 1979, 1980; 

Eskola et al. 1992; Sniadack et al. 1995; Lloyd-Evans et al. 1996; Kilpi et al. 2001). 

These pediatric serogroups are also poor immunogens in children, and the antibody 
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response comparable to adults against these types has been recorded only at the age of 5 

years or even later (Douglas et al. 1983; Robbins et al. 1983; Koskela et al. 1986; 

Leinonen et al. 1986). In older children and adults, a larger number of serogroups are 

responsible for most cases of Pnc disease (Hausdorff et al. 2000a). In Europe and the 

U.S., the Pnc serogroups most often associated with invasive Pnc disease in older 

children and adults include 14, 4, 3, 9, 6, 12, 18 and 19 (Hausdorff et al. 2000b). Some 

Pnc groups/types are more likely to be carried for prolonged periods without causing an 

overt disease, e.g., types 6, 15, 16 and 17 among older children and adults (Nemir et al. 

1936; Riley et al. 1981; Smart et al. 1987). Conversely, some serotypes (e.g., types 1, 3, 

14, 18 and 46) have been rarely carried but frequently isolated from cases of Pnc 

disease (Gray et al. 1979, 1980; Riley & Douglas 1981; Boulnois 1992). In young 

children, however, the types causing disease are generally the same as those carried in 

the population (Gray et al. 1982). 

 

There are differences in the geographical distribution and prevalence of Pnc serogroups 

and serotypes. In Europe and the U.S., approximately 20 serotypes are responsible for 

~90% of all reported Pnc diseases, while these types account for <70% of Pnc diseases 

in e.g. Asian countries (Lee 1987). The seven most common serogroups in the U.S. 

during the last decade (14, 6, 19, 18, 23, 4 and 9) accounted for 84% of isolates from 

Finland and 78% from Australia, but only 33% of isolates from Rwanda and 31% from 

Papua New Guinea (Sniadack et al. 1995).  

 

Changes in the type distribution and prevalence among more frequent Pnc types have 

been described over longer time periods (Lund 1970; Finland & Barnes 1977; Bruyn et 

al. 1992). In the U.S, the Pnc types 1-3 declined from most common to infrequent 

between 1935 and 1974 (Finland & Barnes 1977). At the same time, the proportion of 

Pnc infections caused by the seven serogroups now included in the lisenced conjugate 

vaccine (types 4, 6B, 9V, 14, 18C, 19F, and 23F) increased significantly (Feikin & 

Klugman 2002). The probable explanations for these shifts have been suggested to be 

the improvement of socioeconomic conditions, changes in antibiotic use and changes in 

the immunocompromised status of the populations (Feikin & Klugman 2002).  

 

Certain Pnc serogroups have been shown to be preferentially associated with specific 

disease manifestations. For instance, serogroups 1 and 14 are most commonly isolated 
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from blood in both children and adults. Serogroups 6, 10, and 23 are most commonly 

isolated from CSF and serogroups 3, 19, and 23 from middle ear fluid (MEF). The 

pneumococci causing disease may need different strategies to remain at the sites of 

infection and overcome host defense mechanisms. Andersson et al. (1981) have shown 

that strains of serotypes 6A, 14, 19F and 23F adhere strongly when isolated from the 

nasopharynx of patients with AOM, but less strongly when isolated from the blood or 

CSF. Thus, strongly and poorly adhering strains may be found within the same capsule 

type, and the avidity of adhesion of a Pnc strain may correlate with the type of infection 

that results.  

 

2.2.2. Acute otitis media (AOM) 

AOM is a mild, but extremely common disease during childhood. It is the most 

common reason for the prescription of antibiotics to children. In Finland, 0.5 million 

attacks of AOM have been calculated to occur each year (Eskola et al. 2000). The 

incidence of AOM among children is highest before 2 years of age showing a peak 

between 6 and 18 months (Teele et al. 1989; Paradise et al. 1997; Kilpi et al. 2001). The 

annual incidence rate of AOM in Finnish children during the first two years of life is 

around 50% (Pukander et al. 1982).  

 

AOM may be of bacterial, viral, or both bacterial and viral origin. S. pneumoniae causes 

approximately 35% of the AOM episodes, nontypeable H. influenzae 25% and M. 

catarrhalis 15% (Luotonen et al. 1981; Karma et al. 1985; Pelton 1998). In the FinOM 

Cohort Study, S. pneumoniae, H. influenzae and M. catarrhalis were isolated in 26%, 

23% and 23% of AOM events, respectively (Kilpi et al. 2001). In a number of studies, 

Pnc groups 6, 14, 19 and 23 have been reported to cause the most cases of Pnc AOM 

(Gray et al. 1980; Klein 1980; Prellner et al. 1984b; Kilpi et al. 2001; Hausdorff et al. 

2002). 

 

Nasopharyngeal carriage of middle ear pathogens is considered to be the prequisite for 

AOM. The carriage of these pathogens is common particularly in young children, which 

may be one explanation for the high incidence of AOM among young individuals 

(Stenfors & Räisänen 1990). The middle ear pathogens disappear from the nasopharynx 

when children grow older. In a study by Stenfors and Räisänen (1990), all children 

under two years harboured middle ear pathogens in their nasopharynx, the predominant 
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pathogen being S. pneumoniae (70%) followed by H. influenzae (65%) and M. 

catarrhalis (48%). Among the older children (2-5 years), 72% were colonized by 

middle ear pathogens. The predominant pathogen in this age group was H. influenzae 

(44%), followed by M. catarrhalis (36%) and S. pneumoniae (16%). Several studies 

have reported that the prevalence of Pnc carriage starts to decrease after the age of 3-5 

years (Masters et al. 1958; Hendley et al. 1975; Loda et al. 1975; Ingvarsson et al. 

1982). However, the incidence rates of Pnc AOM start to decrease already at the age of 

18 months when the incidence of AOM caused by H. influenzae starts to increase (Kilpi 

et al. 2001). 

 

The transition of pneumococcus from a commensal to a pathogen is so far poorly 

understood. One important aspect of the Pnc interaction with host cells seems to be that 

it is benign and cleared by a capsule-specific immune response unless there is a 

coincident activation of host cells. Activation of nasopharyngeal cells by inflammatory 

cytokines, such as tumor necrosis factor (TNF) and interleukin-1 (IL-1), qualitatively 

and quantitatively increases the presentation of receptors for pneumococci (Cundell et 

al. 1995c). Thus, the ability of pneumococcus to invade human cells may be more a 

result of changes in the human cell surface than in the bacteria itself (Tuomanen 2000). 

To gain access to the middle ear, pneumococci must ascend through the Eustachian tube 

from the nasopharynx. Very little is known about this process. Once in the middle ear, a 

major result of bacterial replication is influx of neutrophils and a profound 

inflammation (Tuomanen 2000).  

 

A number of risk factors have been associated with the development of AOM. Several 

of them are related to the home environment. For example, the presence of siblings 

increases the risk of AOM through exposure to potential middle ear pathogens and 

respiratory viruses (Teele et al. 1989; Paradise et al. 1997). Smoking parents and 

exposure to cigarette smoke in the household causes irritation of the respiratory tract 

and is another risk factor for AOM (Teele et al. 1989; Owen et al. 1993; Ey et al. 1995; 

Uhari et al. 1996b). The form of infant nutrition has also been shown to affect the risk 

of AOM, which is decreased by breast milk and increased by infant formula (Sipilä et 

al. 1988; Teele et al. 1989; Owen et al. 1993; Uhari et al. 1996b; Duffy et al. 1997). 

Outside the home, the most important risk factor for AOM has been shown to be the 
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enrollment in day care, which increases the exposure of a child to respiratory and 

middle ear pathogens (Henderson et al. 1986; Sipilä et al. 1988; Uhari et al. 1996b). 

 

Most cases of AOM are preceded by a viral upper respiratory tract infection. The viral 

infection predisposes the child to the development of AOM by causing Eustachian tube 

dysfunction and enhancing nasopharyngeal carriage of the middle ear pathogens 

(Sanyal et al. 1980; Faden et al. 1991; Bluestone 1996; Syrjänen et al. 2002). 

Rhinovirus, respiratory syncytial virus (RSV), adenovirus, influenza and parainfluenza 

viruses are detected in middle ear effusions of 17 to 24% of children with AOM, either 

alone or in combination with bacteria (Chonmaitree et al. 1992; Okamoto et al. 1993; 

Sung et al. 1993; Chonmaitree et al. 2000). A clear association between RSV-epidemics 

and AOM has been demonstrated (Ruuskanen et al. 1989). Furthermore, AOM 

associated with a viral respiratory tract infection is prolonged in comparison to AOM in 

the absence of a viral infection (Heikkinen 2000). AOM is predominantly a winter 

disease and the pattern seen with AOM is consistent with the appearance of winter 

respiratory viruses (Faden et al. 1998). 

 

The most evident way to prevent viral or bacterial AOM is immunization. The only 

respiratory viral vaccine currently available is the influenza virus vaccine. Its use has 

been associated with a reduction of AOM episodes. Children in day-care centers who 

received influenza vaccine had a 33-36% reduction in the number of diagnosed AOM 

episodes as compared to placebo recipients (Heikkinen et al. 1991; Clements et al. 

1995). The ability of the bacterial vaccines to prevent AOM has not been as promising 

and more effective bacterial vaccines against AOM are needed. For example, 

immunization of infants with a 7-valent Pnc conjugate vaccine has been shown to be 

only modestly beneficial against AOM, the efficacy against culture-confirmed Pnc 

AOM being approximately 30% and the overall efficacy rate against all AOM episodes 

6-7% (Black et al. 2000; Eskola et al. 2001; Kilpi et al. 2003). An increase in AOM 

caused by non-vaccine serotypes and other bacterial pathogens of the upper respiratory 

tract has been detected.  

 

Nonimmune strategies for prevention of AOM include the use of oligosaccharides and 

xylitol. As mentioned above, the intranasal administration of an antiadhesive 

oligosaccharide in Finnish children had no beneficial effect either on the 
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nasopharyngeal carriage or the occurrence of AOM (Ukkonen et al. 2000). Kontiokari 

et al. (1995, 1998) have demonstrated that xylitol inhibits the growth and adhesion of S. 

pneumoniae in vitro. This has stimulated an interest to develop xylitol-based protocols 

for the prevention of AOM. Two studies have demonstrated the efficacy of xylitol in 

preventing AOM (Uhari et al. 1996a, 1998). Xylitol administration during an acute 

respiratory infection was however found to be ineffective in preventing AOM 

(Tapiainen et al. 2002a). These results are encouraging but additional studies are needed 

to understand the pharmacokinetics of xylitol and to define the optimal administration 

doses and schedule (Tapiainen et al. 2002b). 

 

2.2.3. Pneumococcal pneumonia and invasive diseases 

2.2.3.1.  Pneumococcal pneumonia 

S. pneumoniae is the most frequent cause of community-acquired pneumonia among 

patients requiring hospitalization in the various geographical areas. The attack and case 

fatality rates of Pnc pneumonia are highest in elderly patients (Sullivan et al. 1972, 

Feldman 2001). Pnc pneumonia causes about three million deaths of children less than 5 

years of age each year, nearly all of which are in developing countries (Greenwood 

1999). The distinctive symptoms of Pnc pneumonia are cough and sputum production, 

which reflect the proliferation of bacteria and the inflammatory response in the alveoli, 

and fever, which results from the release of cytokines and other pyrogenic substances 

both locally and systemically (Musher 1992). 

 

In most cases Pnc pneumonia results from the aspiration of pneumococci resident in the 

upper respiratory tract (Boulnois 1992) (Figure 1). The lower respiratory tract is 

protected by several specific and nonspecific defense mechanisms (Busse 1991). Failure 

of these defenses may facilitate access of pneumococci to the bronchi and the lungs 

(Boulnois 1992; Musher 1992). However, progression to pneumonia requires more than 

the simple association of pneumococci with alveolar cells (Cundell et al. 1995a).  

 

Persons with underlying conditions or altered clearance mechanisms (such as cigarette 

smokers and persons having chronic bronchitis, asthma, chronic obstructive pulmonary 

disease, or lung cancer) are at a high risk of getting pneumonia (Musher 1992). Viral 

upper respiratory tract infections may play a particularly important role in facilitating 

Pnc invasion by compromising the nonspecific defense mechanisms of the lung and 
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causing epithelial cell damages. Sequelae of the common viral upper respiratory tract 

infection (such as excessive mucus production, disruption of the normal epithelium and 

dampening of ciliary function) have been shown to predispose to Pnc pneumonia 

(Douglas et al. 1979; Gray et al. 1989). The association between influenza and Pnc 

pneumonia is well documented. Prior influenza virus infection enhances the adherence 

of pneumococci to tracheal epithelial cells (Plotkowski et al. 1986). This enhancement 

is thought to be mediated by viral neuraminidase, which cleaves sialic acid from 

glycolipids in human lung tissue. This way, viral neuraminidase may expose other 

structures that can function as receptors for Pnc adherence. 

 

Bacteria that colonize the lungs may gain access to the bloodstream. Bloodstream 

infections are a common complication of bacterial pneumonia; bacteria invade the 

alveolar spaces and cause enough tissue damage to disrupt the barriers between alveoli 

and blood vessels. Blood cultures are positive in 15-30% of cases of Pnc pneumonia, 

depending upon the population under study and, to a lesser extent, the Pnc serotype 

(Musher 1992). 

 

2.2.3.2. Pneumococcal septicemia 

Septicemia is a systemic disease in which micro-organisms multiply in the blood or are 

continuously seeded into the bloodstream. Pnc septicemia occurs frequently as a 

complication of Pnc pneumonia. Septicemia may occur also as a primary bacteremia 

(bacteria present in bloodstream) in the absence of a clinically evident focus of 

infection. This phenomenon has been recorded in 15% of bacteremias, most commonly 

in children (Balakrishnan et al. 2000). Epithelial damage caused by previous viral upper 

respiratory tract infections can increase the opportunity of pneumococci to reach the 

bloodstream.  

 

A highest incidence of Pnc bacteremia has been repeatedly documented in infants up to 

two years of age (Jacobs et al. 1979; Kaplan et al. 1998). The incidence is low among 

teenagers and young adults, increases in patients of middle age, and reaches a high level 

among population over 65 years (Breiman et al. 1990). Invasive Pnc diseases are more 

common among men than women in all age groups (Burman et al. 1985; Eskola et al. 

1992; Kuikka et al. 1992; Sankilampi et al. 1997). In a Finnish study, the incidence of 

invasive Pnc disease was 45.3 per 100 000 among children less than 2 years of age, and 
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24.2 per 100 000 among children less than 5 years of age (Eskola et al. 1992). The 

overall incidence of invasive Pnc diseases for all Finnish adults is 9.1 per 100 000, but 

27.1 or more per 100 000 in those aged 65 or over (Sankilampi et al. 1997). Various 

studies performed between 1974 and 1987 in the U.S. show an overall incidence of Pnc 

invasive diseases between 16 and 82 per 100 000 children in the first 5 years of life 

(Mufson et al. 1982; Filice et al. 1986; Istre et al. 1987; Breiman et al. 1990). 

In developing countries the incidence of invasive Pnc diseases is several times higher 

than in the industrialized world. Among Gambian infants a minimum incidence of 185 

per 100 000 per year has been reported (Usen et al. 1998). An extremely high incidence, 

297 per 100 000 persons, has been observed among the Australian aboriginals (Trotman 

et al. 1995). High incidence figures have also been reported from the native populations 

in Alaska (Davidson et al. 1994). Several factors may contribute to these differences in 

incidence rates between regions, including country-specific epidemiologic surveillance 

systems, differing blood culturing practices, living conditions, genetic factors, climate 

and age (Hausdorff 2001). 

 

The incidence of different Pnc serotypes in invasive Pnc disease varies by age and 

region. In children of industrialized countries, the most frequent Pnc groups/types to 

cause Pnc bacteremic diseases are 6, 14, 18, 19, and 23 (Burke et al. 1971; Hansman 

1977; Gray et al. 1986; Riley et al. 1991). The distribution is different in developing 

countries, where groups/types 1, 2, 3, 5, 7, 12, and 46 are found more frequently in 

children (Onyemelukwe et al. 1982; Guirguis et al. 1983; Barker et al. 1989). In adults, 

the most frequent groups associated with Pnc bacteremia are 3, 1, 14, 7, 4 and 8 

(Nielsen et al. 1992).   

 

Pnc septicemia in children seems to be associated with low risk of death, while 

increasing age, an extrapulmonary site of infection, the presence of chronic disease, or 

infection with certain serotypes (particularly type 3) contribute to a higher risk of death 

(Mufson et al. 1974). The mortality of Pnc septicemia over decades has remained stable 

between 25 and 29% (Gillespie 1989). The overall case fatality rate in Finland has 

ranged from 21 to 34% during the last decades (Kuikka et al. 1992; Lääveri et al. 1996). 

The case fatality rate in children is lower than in adults ranging from 2 to 15% (Douglas 

et al. 1983; Filice et al. 1986; Istre et al. 1987; Riley et al. 1991; Dagan et al. 1992; 

Takala et al. 1992). 
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2.2.3.3. Pneumococcal meningitis 

The most severe form of Pnc disease is meningitis. Pnc meningitis is of exceptional 

severity and it is associated with a higher mortality than meningitis caused by other 

common meningeal pathogens (Baraff et al. 1993; Goetghebuer et al. 2000). The Pnc 

serogroups most often isolated from CSF include groups 6, 10 and 23 at all ages 

(Hausdorff et al. 2000a). 

 

Meninges are a set of membranes that cover the brain and spinal column, protecting 

them from harmful substances in blood. Pnc meningitis usually occurs in relatively few 

individuals as a result of seeding of the meninges during high-grade bacteremia or a 

head trauma (Musher 1992). The actual mechanisms and route used by pneumococci to 

migrate to the meninges are not clear. It has been suggested that local inflammation 

caused by pneumococci breaches the blood-brain barrier and admits entry of bacteria 

and phagocytes to this fragile area. The inflammatory reaction, rather than the pathogen 

itself, is largely responsible for the damage that results from bacterial meningitis (Pfister 

et al. 1997). Neurological sequelae such as hearing loss, neurological deficits and 

neuropsychological impairment are common among survivors (Arditi et al. 1998; 

Woolley et al. 1999; van de Beek et al. 2002). 

 

The rates of morbidity and mortality of Pnc meningitis in children of industrialized 

countries are approximately 30% and 10%, respectively (Kornelisse et al. 1995; Arditi 

et al. 1998). In developing countries the figures are dramatically higher: about 50% of 

children with Pnc meningitis die while in hospital (Muhe et al. 1999; Goetghebuer et al. 

2000). 

 

2.2.4. Treatment of pneumococcal diseases 

Penicillin, a cheap and safe antimicrobial drug, has been the standard choice for 

treatment of Pnc diseases for decades. However, due to the emergence of antibiotic-

resistant strains, Pnc diseases have become more difficult to treat. The first Pnc strain 

resistant to penicillin was isolated in 1965 and ten years later the first multi-resistant 

pneumococci were reported (reviewed in: Appelbaum 1992). Penicillin acts by binding 

to and thereby blocking the action of cell membrane transcarboxypeptidase-enzymes 

(also called penicillin-binding proteins, PBPs), which are responsible for the bacterial 

cell wall synthesis (Musher 1992). Resistance to penicillin results from changes in PBPs 
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that decrease their affinity for penicillin without altering their functions in cell wall 

synthesis. At the moment, the proportion of Pnc strains resistant to penicillin is steadily 

increasing in all parts of the world. The foci of high levels of resistance have been 

detected particularly in parts of Southern and Eastern Europe. In some areas up to 35% 

of Pnc isolates are resistant to penicillin (Dagan et al. 1994; Hofmann et al. 1995; 

Arnold et al. 1996; Whitney et al. 2000). 

 

Epidemiologic studies have shown that frequent antibiotic use and the use of 

prophylactic antibiotics are the risk factors for spread of drug-resistant Pnc strains. This 

is true particularly in institutional settings, such as child care centers and hospitals, 

where person to person transmission of respiratory pathogens may be facilitated 

(Radetsky et al. 1981; Reichler et al. 1992). Young children are often treated with 

antibiotics due to the high frequency of upper respiratory tract infections. Thus, this is 

probably the reason why antimicrobial resistance has developed primarily in Pnc 

serogroups prevalent in young children, namely 6, 14, 19 and 23 (Dagan et al. 1994). 

 

The rapid spread of penicillin- and multiresistant strains has required switching to more 

costly antibiotics. A frightening characteristic of penicillin-resistant strains of S. 

pneumoniae is that their rate of resistance also to other commonly used antibiotics such 

as erythromycin, tetracycline and trimethoprim-sulfamethoxazole is much higher than 

in penicillin-susceptible strains (Musher 1992). Acquisition of high-grade resistance is 

thought to originate via horizontal transfer of genetic material, probably from another 

bacterial species (Musher 1992). Some multiresistant Pnc isolates are susceptible only 

to vancomycin. However, the appearance of vancomycin tolerance (i.e., the ability of 

bacteria to survive but not grow in the presence of an antimicrobial drug) in 

pneumococci has now also emerged. To date, five penicillin-resistant and vancomycin-

tolerant clinical strains of pneumococcus have been reported: three of these strains have 

been invasive isolates and two strains have been isolated from the nasopharynx (Novak 

et al. 1998b; McCullers et al. 2000; Henriques Normark et al. 2001; Hidalgo et al. 

2003).  
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3. Pneumococcal pathogenesis and virulence factors 
The pathogenesis of Pnc infection is a complex interplay between Pnc virulence factors 

and the defense mechanisms of the host. Because of the importance of pneumococci as 

a human pathogen, Pnc virulence factors have been intensively studied over many 

decades. Despite all this attention, many facts about the actual mechanisms of Pnc 

virulence are still unknown. Several approaches have been and are used for the 

investigation. The mouse model system is widely used to assess virulence factors and to 

test effectiveness of different types of Pnc vaccines. Although S. pneumoniae is 

normally a human pathogen, it can kill mice when injected peritoneally or administered 

intranasally in large enough doses. Primary human polymorphonuclear leucocytes and 

macrophages or macrophage-like cell lines (e.g., HL-60) are used to test the ability of S. 

pneumoniae to resist phagocytosis. Human umbilical vein endothelial (HUVE) cells and 

rat alveolar cells are used to study effects of the bacteria on endothelium and lung, 

respectively. In addition, the nasopharyngeal human epithelial cell line (Detroit 562) has 

been used to study Pnc adhesion (Romero-Steiner et al. 2003, Weiser et al. 2003). 

 

                              
 
Figure 2.  Cell surface of Streptococcus pneumoniae. The molecules that have roles in Pnc virulence and 

or elicitation of protection against S. pneumoniae are illustrated (Briles et al.. 2000e, with permission). 
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The symptoms of all Pnc diseases are primarily due to the ability of the bacteria to 

evoke intense inflammatory response. Four key effects of Pnc pathogenesis produced by 

the Pnc virulence determinants and the corresponding immune responses elicited to 

them are adhesion, invasion, inflammation and shock. Several Pnc surface components 

for which roles in Pnc virulence and/or elicitation of protection against pneumococci 

have been established are shown in Figure 2.                                      
 

3.1 Adhesion 

Adherence of pneumococci to human cells is achieved by ligand-receptor pairing 

between bacterial surface proteins and eukaryotic surface carbohydrates (Cundell et al. 

1995a). Cells in the respiratory tract display a specific array of carbohydrates, which 

dictates the tissue tropism of the respiratory pathogens. Targets for Pnc attachment on 

human cells are glycoconjugates that bear a specific carbohydrate within their structure, 

such as sialic acid, N-acetyl glucosamine β1-3-galactose (GlcNAcβ1-3 Gal), N-acetyl 

galactosamine β1-4-galactose (GalNAcβ1-4 Gal), N-acetyl galactosamine β1-3-

galactose (GalNAcβ1-3 Gal) or lacto-N-neotetraose (Andersson et al. 1981, 1983, 1988; 

Krivan et al. 1988; Idänpään-Heikkilä et al. 1997). Cytokine activation (e.g. TNF and 

IL-1) of the eukaryotic cells has been shown to change the expression of receptors 

dramatically, allowing increased Pnc adherence (Cundell et al. 1995b). Sialic acid is a 

prominent ligand in the upper respiratory tract, being operative for the conjunctiva, 

Eustachian tube and nasopharynx (Barthelson et al. 1998). The disaccharide GalNacβ1-

4 Gal is prominent in the lower respiratory tract and is recognized by a wide variety of 

pulmonary bacterial pathogens (Krivan et al. 1988). All strains of pneumococci do not 

exhibit an equal ability to recognize these sugars (Andersson et al. 1981; Talbot et al. 

1996). The serotype has not been shown to determine the adhesive capacity of the Pnc 

strains (Andersson et al. 1981).  

 

The efficiency of adherence and virulence of a given Pnc strain is greatly affected by a 

spontaneous, high frequency phenomenon known as phase variation (Weiser et al. 

1994). The rate of spontaneous variation is strain-specific. Pnc phase variation can be 

recognized by changes in colony morphology viewed by oblique light: opaque, semi-

transparent and transparent phenotypes can be separated (Weiser et al. 1994). The 

transparent colony variants have a selective advantage over opaque variants for 

adherence to human epithelial cells and establishing nasopharyngeal colonization in the 
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infant rat model (Weiser et al. 1994; Tuomanen 1997). The opaque variants, in turn, 

survive better in the bloodstream than the transparent ones (Kim et al. 1998). The 

mechanism for the different adhesive and invasive capabilities between opaque and 

transparent forms involves modification of several surface proteins and cell wall 

structure. The transparent bacteria display less capsule, more cell wall 

phosphorylcholine and bear different proteins on their surfaces than the opaque variants, 

e.g., significantly greater amounts of Pnc adhesin Pnc surface protein C (PspC)/choline 

binding protein A (CbpA) (Weiser et al. 1994, 1996; Rosenow et al. 1997; Kim & 

Weiser 1998). The opaque strains, in turn, bear more capsule, less choline and more of 

the protective surface antigen Pnc surface protein A (PspA) (Kim & Weiser 1998). It is 

becoming apparent that the downregulation of capsule production enhances host cell 

invasion (Talbot et al. 1996; Weiser et al. 1996, 1999). It has been calculated that the 

PS capsule inhibits adherence and invasion of eukaryotic cells by up to 200-fold in vitro 

(Ring et al. 1998, 2000). After invasion, it is important to regain the capsular phase for 

resistance against phagocytosis. 

 

In general, the mechanism of bacterial phase variation usually involves a control of 

gene expression at the level of transcription. Alternatively, an increasing number of 

bacterial genes are found, in which expression is switched on and off by some form of 

DNA arrangement, such as inversion, recombination or slipped strand mispairing 

(Saluja et al. 1995; Henderson et al. 1999). In the case of pneumococcus the precise 

mechanism of phase variation has not yet been understood at the genetic level. 

Recently, Waite et al. (2001, 2003) have shown that high-frequency capsule phase 

variation in Pnc serotypes 3, 8 and 37 may be controlled by spontaneous sequence 

duplications within the capsule genes: spontaneous sequence duplication switches the 

capsule production off and excision of the duplication re-enables capsule production. 

 

3.1.1. Pneumococcal surface adhesin A (PsaA) 

Pnc surface adhesin A (PsaA) is a 37-kDa surface lipoprotein essential for Pnc 

virulence. Initially, PsaA was thought to be a Pnc adhesin, due to two observations. 

First, the sequence analyses of psaA gene revealed a significant degree of homology 

with the streptococcal putative lipoprotein adhesins ScaA from S. gordonii, SsaB from 

S. sanguis and FimA from S. parasanguis (Sampson et al. 1994). Second, the PsaA- 

mutants displayed markedly reduced in vitro adherence to a human type II pneumocyte 
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cell line (Berry et al. 1996b). However, genomic sequence comparison (Berry et al. 

1996b) and studies on the crystal structure of PsaA (Lawrence et al. 1998) revealed that 

it is a component of an ATP-binding cassette-type (ABC-type) permease membrane 

transport system. ABC-type transport systems are found in both prokaryotic and 

eukaryotic organisms (Higgins 1992, Tam & Saier 1993). They consist of up to three 

protein components: an extra-cytoplasmic protein responsible for solute binding, an 

integral membrane protein responsible for transport of the solute through the cell 

membrane, and a cytoplasmic protein that couples ATP-hydrolysis to the transport 

process. It is believed that PsaA is responsible for the uptake of Mn2+ (and possibly 

Zn2+) into the bacterium (Dintilhac et al. 1997). Many genes for such metal transporters 

exist in the Pnc genome. Some of these proteins, such as Adc and PsaA, are particularly 

important for Pnc virulence (Dintilhac et al. 1997). 

 

The loss of host adhesion observed in PsaA- mutants is probably indirect, with a 

secondary protein being rendered absent or nonfunctional via Mn2+ (or Zn2+) 

deprivation. PsaA appears to have a regulatory role in adhesion by affecting the 

expression of choline-binding proteins on the surface of pneumococcus: mutants 

lacking the psa operon demonstrate a complete absence of PspC/CbpA (Novak et al. 

1998a). The mutants negative for psaA gene have also been shown to be highly 

sensitive to oxidative stress (i.e., to superoxide and hydrogen peroxide), which could in 

part explain the reduction in virulence (Tseng et al. 2002). It has been suggested that 

PsaA might play an important role in the regulation of expression of oxidative-stress 

response enzymes and intracellular redox homeostasis (Tseng et al. 2002). 

 

PsaA is considered as a Pnc protein vaccine candidate. In animal models, PsaA has been 

shown to be immunogenic and protective against invasive Pnc disease (Talkington et al. 

1996; De et al. 1999; Ogunniyi et al. 2000). It has been found to be highly effective 

against nasopharyngeal carriage in mice when administered intranasally, combinations 

of PsaA with PspA being more effective than PsaA alone (Briles et al. 2000a). 

 

3.1.2. Pneumococcal surface protein C (PspC) 

Pnc surface protein C (PspC) plays an important role in Pnc pathogenesis by 

functioning as an adhesin (Rosenow et al. 1997). It also binds soluble host factors such 

as the secretory component (SC), the third component of complement (C3) and 
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complement factor H (Hammerschmidt et al. 1997; Cheng et al. 2000; Janulczyk et al. 

2000; Dave et al. 2001). The gene for this protein is present in approximately 75% of S. 

pneumoniae strains. 

 

Typical surface proteins of gram-positive bacteria are covalently anchored to the cell 

wall via a highly conserved hexapeptide sequence motif LPXTGE (= leucine-proline-X-

threonine-glycine-glutamic acid) at their carboxy-terminal end (Navarre et al. 1999). 

Pneumococci display some of these LPXTGE motif-containing proteins. In addition, 

pneumococci harbor a dozen proteins that are attached to the Pnc surface by docking 

non-covalently with the phosphorylcholine of the Pnc cell wall. These Pnc choline-

binding proteins (CBPs) have a common choline-binding carboxy-terminal (Garcia et 

al. 1998) and the amino-terminal that produces their functional diversity. The choline-

binding domain is composed of multiple carboxy-terminal tandem amino acid repeats 

(usually approximately 10 repeat regions of approximately 20 amino acids). The Pnc 

CBPs include several important surface molecules, such as PspA, PspC, CbpA, SpsA (= 

S. pneumoniae secretory IgA binding protein), Hic (= factor H-binding inhibitor of 

complement), and LytA (= major Pnc autolysin). The expression of CBPs is subject to 

phase variation that results in the display of different combinations of proteins. This 

adapts the bacteria to survive on the mucosa versus the blood stream. 

 

Sequence analysis has shown that PspC, CbpA, Hic, PbcA (= C3-binding protein A) and 

SpsA are variants of the same CBP (Brooks-Walter et al. 1999). Under different names 

several properties have been attributed to this surface protein. Its abilities to bind C3 

and secretory IgA were described under the names PbcA (= C3-binding protein A) and 

SpsA (= S. pneumoniae secretory IgA binding protein), respectively (Hammerschmidt et 

al. 1997; Hostetter et al. 1997). Under the name CbpA (= choline-binding protein A), 

the protein has been shown to interact with human epithelial and endothelial cells 

(Rosenow et al. 1997). CbpA was the first Pnc surface adhesin to be described (Weiser 

et al. 1996). A CbpA-deficient mutant showed a >50% reduction in adherence to 

cytokine-activated human cells and failed to bind to immobilized sialic acid or lacto-N-

neotetraose, the known targets for Pnc adherence on eukaryotic cells (Rosenow et al. 

1997). Under the name Hic (= factor H-binding inhibitor of complement) the protein 

was found to absorb factor H, an inhibitor of complement, from human plasma 

(Janulczyk et al. 2000). The complement inhibitory function of factor H was not 
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impaired in the presence of Hic. This suggests that by accumulating an active 

complement inhibitor at the Pnc surface, Hic may act to block the deposition of C3b and 

concomitant opsonophagocytosis (Janulczyk et al. 2000; Jarva et al. 2002). The term 

PspC is preferred over the other designations for two reasons. First, it was used for the 

first sequence deposited in GenBank (accession number: U72655). Second, it is a 

generic name referring only to the surface location of the molecule (Iannelli et al. 

2002). 

 

Analysis of the deduced amino acid sequence of different PspC variants has revealed 11 

major groups of PspC proteins (PspC1-11) (Iannelli et al. 2002). Single proteins within 

a group display only minor variations in the amino acid sequence. A common 

organization of the PspC molecules was shown to be: (i) a 37-amino-acid leader 

peptide, (ii) an amino-terminal segment, which is essentially α-helical, and (iii) a 

carboxy-terminal anchor, responsible for the cell surface attachment (Iannelli et al. 

2002). Unexpectedly, the mechanism for surface attachment for different PspC 

molecules is not uniform, since some of the PspC allelic variants (PspC7-11) do not 

show the choline-binding domain, but rather the LPXTGE motif instead (Iannelli et al. 

2002). The presence of different anchor regions in different allelic variants is a unique 

trait of PspC. 

 

When used as an immunogen in the mouse model, PspC has proved a good candidate 

for a Pnc protein vaccine (Briles et al. 2000b). Immunization of mice with a proline-rich 

domain of PspC molecule results in protection against challenge with Pnc strains 

expressing both PspA and PspC, or only PspA suggesting cross-protection (Brooks-

Walter et al. 1999). 

 

3.1.3. IgA1-protease 

Pneumococci produce IgA1-protease, which functions to impair host defense at the 

mucosal surfaces and supports colonization of the nasopharynx. (Kilian et al. 1986; 

Weiser et al. 2003). These proteases are thought to be important for the ability of the 

bacteria to colonize human mucosal surfaces in the presence of a predominant secretory 

immunoglobulin (Ig) isotype, specific secretory IgA (sIgA). Nasopharyngeal carriage of 

pneumococcus is common despite of mucosal IgA against the capsular PS, which is the 

immunodominant surface antigen of S. pneumoniae (Opstad et al. 1995; Virolainen et 
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al. 1995). This indicates that IgA1-protease may impair the function of anti-Pnc PS IgA 

antibodies. In a recent report, it has been shown that IgA1 antibody modified by IgA1-

protease, rather than inhibiting Pnc adherence, markedly enhances bacterial attachment 

to host epithelial cells in a cell-culture colonization model (Weiser et al. 2003). 

 

3.2 Invasion 

From the nasopharynx, pneumococci may spread locally, either upward into the 

Eustachian tube and middle ear cavity, or downward into the alveoli. Invasion of the 

lower respiratory tract is an important event in Pnc infection. Pnc pneumonia itself is a 

life-threatening illness, but it also serves as a focus for invasion to the bloodstream 

(Gillespie et al. 2000). Pneumococci are also able to establish systemic invasion even in 

the absence of a clinically evident focus of infection (Balakrishnan et al. 2000). The 

MLST method has shown that some sequence types define strains with an increased 

capacity to cause invasive disease (Enright & Spratt 1998). These apparently successful 

clones may have gathered a collection of certain genes or may have enhanced 

expression of certain genes facilitating the transition from Pnc carriage to invasion 

 

3.2.1. Capsule 

For a long time, Pnc PS capsule has been considered unquestionably crucial for Pnc 

virulence based on its capacity to confer resistance to complement-mediated 

opsonophagocytosis (Wood et al. 1949; Austrian 1981; Bruyn et al. 1992; Watson et al. 

1995). The encapsulated Pnc strains have been found to be at least 105 times more 

virulent in mice than the strains lacking the capsule (Avery et al. 1931; Watson et al. 

1990). Antibodies against capsular components are highly protective (MacLeod et al. 

1945; Austrian et al. 1976), and in the absence of antibodies to capsular PS 

phagocytosis and killing are low. At the moment, 90 different capsular PSs have been 

described on the surface of the pneumococcus. 

 

The capsule consists of high-molecular weight polymers made up of units of repeating 

oligosaccharides, which can contain 2 to 8 monosaccharides (AlonsoDeVelasco et al. 

1995). The capsule itself lacks inflammatory potential and it does not cause toxicity to 

animals and humans. The most important mechanism by which the capsule promotes 

Pnc virulence is the protection of the bacteria against ingestion by resident pulmonary 

macrophages or recruited polymorphonuclear neutrophils (PMNs) (Tuomanen et al. 
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1985; Tuomanen et al. 1987). The capsule forms a physical barrier that separates bound, 

fixed complement components from complement receptors on host phagocytes (Brown 

et al. 1982; Winkelstein 1984). It may also function in the electrostatic repulsion of 

phagocytes from bacteria (Kasper 1986). Furthermore, the capsule may cover protective 

epitopes of Pnc surface proteins so that they are not exposed to antibodies. 

 

The association between capsular type and disease is well documented. Pnc virulence 

and invasiveness depend on both the composition and quantity of the capsule produced, 

the chemical composition however, being a more important factor than the thickness 

(Knecht et al. 1970; Lee 1987; Lee et al. 1991). For example, Pnc strains of type 3 and 

37 both produce large amounts of capsule, but they are different in virulence. Type 3, 

which is composed of a polymer of glucose and glucuronic acid, is among the most 

invasive and virulent types, whereas type 37, with a homopolymer of glucose, is rarely 

associated with Pnc pathogenesis (Knecht et al. 1970). 

 

There is considerable cross-reactivity among certain of the 90 recognized serotypes, and 

a single antigen may provide protection against several types within a given serogroup 

(Robbins et al. 1983; Butler et al. 1993). This is the case for example with serotypes 6A 

and 6B (Robbins et al. 1983), while with serotypes 19A and 19F the cross-

immunogenicity is more limited (Penn et al. 1982). Some immunological cross-

reactivity has been observed between Pnc PSs and PSs from other bacteria, such as 

Klebsiella and non-groupable streptococci (Lee et al. 1991). PS of Klebsiella K2 

induces cross-reactive antibodies to Pnc 19F PS (Lee et al. 1984). Furthermore, the PS 

of streptococcal strain 14636/74 has an identical composition to that of Pnc 19F PS (Lee 

et al. 1984). 

 

The genes responsible for the synthesis of capsular substances are arranged in cassettes 

comprising all the genetic material necessary for capsular synthesis (Dillard et al. 1995; 

Garcia et al. 1997). Pneumococcus is naturally transformable which means that genetic 

material may be exchanged between different Pnc strains. Thus, the capsular type of 

pneumococcus can be exchanged by transformation of capsular gene cassettes in vitro 

and in vivo (Dillard et al. 1995; Garcia et al. 1997). Capsule transformation has been 

known since as early as 1928 (Austrian 1981), and it has been previously found on 

several occasions with antibiotic resistant clones (Coffey et al. 1991; Barnes et al. 
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1995). A few highly virulent Pnc clones appear to be circulating around the world with 

the ability to change capsular type in vivo (Nesin et al. 1998). Given the readiness of 

pneumococcus for horizontal transfer of resistance, capsule and virulence genes 

(Dowson et al. 1997; Caimano et al. 1998), the threat of rapid emergence and 

dissemination of strains circumventing antimicrobial drugs and capsule-based vaccines 

is very real (Campbell et al. 1998). 

 

3.2.2. Pneumococcal surface protein A (PspA) 

Pnc surface protein A (PspA) is a surface protein with variable molecular size ranging 

from 67 to 99-kDa in different Pnc strains. It is present on the surface of all clinically 

important pneumococci and is required for full virulence (McDaniel et al. 1987; Crain 

et al. 1990). PspA is immunogenic and elicits protective antibody response in mice 

(McDaniel et al. 1994).  

 

Based on sequence analyses, PspA molecule has four distinct domains (Figure 3): (i) an 

amino-terminal, highly charged α-helical coiled-coil structure (amino acids 1 to 288 in 

strain Rx1), (ii) a proline-rich domain (amino acids 289 to 370), (iii) a stretch of 10 

highly conserved repeats of 20 amino acids comprising the choline-binding component 

(amino acids 371-571), and (iv) a slightly hydrophobic tail of 17 amino acids at the 

carboxy-terminus (amino acids 572-588) (Yother et al. 1992a). The choline-binding 

component of PspA is homologous with other Pnc CBPs, and is responsible for the 

attachment of PspA to the Pnc surface (Yother et al. 1992b). This orientation results in 

the amino-terminal α-helical domain of the molecule being exposed on the surface and 

thus available to interact with the human host (Gray 1995; Briles et al. 1998). All 

protective monoclonal antibodies bind to the amino-terminal half of the molecule and 

this part also exhibits more antigenic variability due to the accumulation of mutations 

under selective pressure (McDaniel et al. 1994). 

 

PspA is a serologically highly variable molecule and the structure of the pspA gene has 

been shown to be mosaic (Hollingshead et al. 2000). The term “mosaic” refers to the 

pattern of interspersed blocks of nucleotide sequence, which have different evolutionary 

histories, but are found combined in the resulting gene allele subsequent to 

recombination events (Milkman et al. 1988). The high degree of variability exhibited by 

PspA may indicate the importance of this surface protein as a natural target for host 
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defense. Based on the relatedness of the nucleotide and amino acid sequences, the 

different PspA molecules are grouped into three families, which are further subdivided 

into clades (Hollingshead et al. 2000). A clade is a group of PspA molecules that vary 

less than 20% of their amino acids. Over 98% of the PspA molecules typed to date are 

members of families 1 and 2 (Table 1). The clade-defining region is constituted by the 

amino acids 192-260 of the α-helical domain. 

 

 

 

 

 

 

 
Figure 3. Amino-acid-sequence domains of PspA. A, clade defining region (clade = group of PspA 

molecules that vary less than 20% of their amino acids). Figure modified from Briles et al. 2000d and 

Hollingshead et al. 2000. 
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Table 1. Families and clades of PspA molecules. 
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The mechanism of action of PspA is not fully understood. Hammerschmidt et al. (1999) 

showed that PspA functions as a specific receptor for lactoferrin, the amino-terminal 

part being responsible for lactoferrin binding. Lactoferrin is an iron-sequestering 

glycoprotein, which predominates in mucosal secretions. It has been suggested that by 

binding lactoferrin pneumococci are able to interfere with the host’s immune functions 

(Håkansson et al. 2001). PspA has also been reported to inhibit complement activation 

by S. pneumoniae. Tu et al. (1999) showed that PspA blocks the C3 convertase of the 

alternative complement pathway and/or accelerates its dissociation. This leads to an 

inhibition of the downstream events of the complement pathway, which would result in 

opsonization of pneumococci and chemotaxis. In addition, mutant strains lacking PspA 

have been shown to fix more complement than isogenic parent strains expressing PspA 

(Briles et al. 1997). The interference of PspA with complement activation is suggested 

to facilitate Pnc survival and host invasion. 

 

PspA is considered as a Pnc protein vaccine candidate. PspA has been shown to elicit 

protective immunity against Pnc infection in mice (McDaniel et al. 1991; Tart et al. 

1996; Briles et al. 1996b, 1998). It can elicit protection against Pnc carriage and 

subsequent invasive disease in mice following intranasal immunization (Wu et al. 

1997). In a recent study utilizing an experimental human colonization model, serum 

antibodies against PspA have been shown to correlate with protection against Pnc 

carriage (McCool et al. 2002). Animal models have shown that PspA has the ability to 

elicit cross-protection against heterologous strains (Crain et al. 1990; McDaniel et al. 

1991; Briles et al. 1996b). In addition, human antisera from a phase I vaccine trial were 

competent for protecting mice against challenge wth Pnc strains of various PspA types 

(Briles et al. 2000c). However, a study using DNA vaccination of mice showed that the 

cross-reactivity of the induced anti-PspA antibodies was not reflected in cross-

protection (Miyaji et al. 2002). Because of the variability of the PspA protein, a 

potential PspA-based vaccine may need to contain PspA’s of more than one Pnc strain 

to be able to protect against all pneumococci. 

 

3.2.3. Pneumolysin (Ply) 

Ply is a 53-kDa intracellular toxin produced by all clinical isolates of pneumococcus. It 

is released upon lysis of Pnc cells at the stationary phase of growth. The virulence 

properties of Ply are therefore directly dependent on the action of the cell wall 
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degrading enzyme autolysin, Lyt A. Mutants negative for Ply are less virulent than their 

parental strains (Berry et al. 1989b). Immunization with Ply prolongs the survival of 

mice after challenge with pneumococci of different serotypes (Paton et al. 1983b; Lock 

et al. 1992; Alexander et al. 1994). 

 

Ply belongs to a family of toxins known as thiol-activated toxins, which lose their 

activity on oxidation but regain full activity following addition of reducing agents 

(Smyth et al. 1978). Ply shares amino acid homology with other thiol-activated 

cytotoxins, such as those produced by Streptococcus pyogenes (streptolysin O), 

Clostridium perfringens (perfringolysin) and Listeria monocytogenes (listeriolysin). The 

presence of cholesterol in target membrane is a critical determinant of the susceptibility 

of cells to these toxins (Smyth & Duncan 1978). Thiol-activated toxins bind to the 

target membrane as a monomeric toxin. Upon binding to cholesterol, certain regions of 

the toxin monomer change their structural conformation, which exposes a hydrophobic 

part of the monomer that can undergo an insertion process into the host cell membrane. 

Toxin monomers then move laterally on the host membrane and oligomerize to form a 

high molecular weight transmembrane pore. This results in leakage of intracellular 

solutes and an influx of water, resulting in lysis of the host cell. By this mechanism, Ply 

is able to damage a wide range of eukaryotic cells. 

 

Ply is capable of inhibiting several functions of host defense that are known to be 

important in protection against Pnc disease. Ply inhibits neutrophil bactericidal activity 

by reducing chemotaxis, phagocytosis and the respiratory burst (Paton et al. 1983a). It 

also inhibits the lymphocyte proliferation response to mitogens, the synthesis of all Ig 

classes (Ferrante et al. 1984) and the beating of cilia on the human respiratory tract 

epithelium (Steinfort et al. 1989; Feldman et al. 1990). Since the beating of cilia is an 

important aspect in the non-specific host defenses, this may promote the appearance of 

pneumococci in the lower respiratory tract. Ply is able to induce separation of the tight 

junctions of the alveolar epithelial cells (Rayner et al. 1995). This, with its direct 

cytotoxic effect on the cells of the alveolar capillary barrier, serves to facilitate invasion 

of pneumococci into the bloodstream. 

 

Ply has the ability to activate the classical complement pathway in the absence of anti-

toxin antibodies and consume the limited supply of complement factors in the alveoli. 
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The activation of complement may allow pneumococci to evade opsonophagocytosis, 

the essential mechanism for clearance of pneumococci from the lung (Winkelstein 

1984). In addition, Ply released during Pnc autolysis activates the complement at a 

distance from the organism, an activity thought to contribute to virulence by reducing 

serum opsonic activity  (Mitchell & Andrew 1997). The mechanism by which Ply 

activates the classical complement pathway remains controversial. It has been suggested 

that this might be related to sequence similarity between Ply and C-reactive protein 

(CRP). CRP is a human acute phase protein, which binds to bacterial surfaces. It is 

capable of activating the classical complement cascade in the absence of antibodies by 

direct binding of the C1q component of complement. However, molecular structural 

studies have shown, that despite the sequence similarity between Ply and CRP, there is 

no structural homology. Thus, an alternative mechanism must exist. 

Ply is considered as one of the Pnc protein vaccine candidates. Immunization with Ply 

prolongs the survival of mice after challenge with pneumococci of different serotypes 

(Paton et al. 1983b; Lock et al. 1992; Alexander et al. 1994). Mice immunized with 

combinations of Pnc virulence proteins, including Ply, have significantly longer 

survival times than those immunized with any of the antigens alone (Ogunniyi et al. 

2000). Conjugation of pneumolysoid toxoids or recombinant Ply with Pnc capsular PSs 

have shown that conjugates using Pnc protein carriers may confer broader protective 

immunity than conjugates using non-Pnc proteins (Paton et al. 1991; Lee et al. 1994; 

Kuo et al. 1995; Michon et al. 1998; Lee et al. 2001). 

 

3.2.4. Hyaluronidase 

Hyaluronidase facilitates Pnc invasion by degrading hyaluronic acid, a ubiquitous and 

important component of connective tissues. It has been suggested that hyaluronidase 

allows greater access of organisms to the tissue and may contribute to the translocation 

of pneumococci between tissues, for instance from the lung to the bloodstream. 

Kostyukova et al. (1995) demonstrated that Pnc strains with higher hyaluronidase 

activity could breach the blood-brain barrier and disseminate more effectively. 

Hyaluronidase contributes also to the generation of the inflammatory response. In S. 

pneumoniae cultures, the hyaluronidase is found in both the culture and the cell-

associated fractions. This may suggest that at least part of the enzyme is released by the 

pathogen to the surrounding host tissues during infection to facilitate the bacterial 

invasion (Berry et al. 1994). At the same time, hyaluronidase (along with 
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neuraminidase) activity may serve to increase the substrate availability for Pnc growth 

by converting larger polymers to products that can be transported into the cell (Tettelin 

et al. 2001). 

 

3.2.5. Neuraminidase enzymes (NanA and NanB) 

Neuraminidase enzymes cleave sialic acid residues from host glycolipids and 

gangliosides causing damage to host tissues. This action may reveal new receptors for 

Pnc adhesins, facilitating both adhesion and invasion (Krivan et al. 1988). Pneumococci 

have at least two enzymes with neuraminidase activity, NanA and NanB. Both proteins 

are exported proteins with typical signal peptides, but NanB lacks the typical surface 

anchorage domain (LPXTGE) present in NanA. It is still uncertain, why S. pneumoniae 

produces two distinct neuraminidases. It is likely, that they specialize to be most 

efficient in different environmental conditions during Pnc infection or invasion of the 

host. This possibility is supported by the different molecular sizes as well as the widely 

different pH optima of the two proteins. NanA and NanB possess very little amino acid 

homology and have molecular masses of ∼108-kDa and ∼75-kDa, respectively (Camara 

et al. 1994; Berry et al. 1996a). NanA has maximum activity at ~pH 5, whereas NanB is 

most active at ~pH 7 (Berry et al. 1996a). 

 

3.2.6. Binding to the platelet-activating factor (PAF) receptor 

It has been proposed that progression to invasive Pnc disease involves the local 

generation of inflammatory factors (e.g., cytokine production), which change the 

number and type of receptors available by activated human cells for Pnc binding 

(Cundell et al. 1995b). Cell wall components released from dividing Pnc or a concurrent 

viral respiratory infection may function as factors inducing the inflammation. Lung and 

endothelial cells that are activated by inflammatory factors express the platelet-

activating factor (PAF) receptor, which enhances Pnc adherence to the host cells 

(Cundell et al. 1995b) and facilitates the uptake of pneumococci (Tuomanen 1999). 

Pneumococci adhere srongly to and invade endothelial and epithelial cells activated by 

inflammatory factors, as well as PAF-receptor-transfected cells (i.e., the cells that 

harbor cDNA of the PAF-receptor) (Cundell et al. 1995b). Pneumococci cannot enter 

resting vascular endothelial cells in vitro, which is shown by the survival of only 0.1% 

of a Pnc inoculum upon exposure to exogenous gentamicin (Cundell et al. 1995b). The 

invasion rates of classically “invasive” bacteria such as Salmonella and Shigella 



 

 

41

 
 

represent >2-3% of the inoculum (Isberg 1991). Thus, S. pneumoniae cannot be 

considered invasive for naïve cells. On the contrary, activation of cells results in the 

entry of 2-3% of the pneumococci within 30 minutes (Cundell et al. 1995a). This 

internalization of pneumococci by activated cells can be largely prevented by treatment 

with PAF-receptor antagonists. 

 

Pneumococci adherent to the PAF-receptor may translocate across the alveolar and 

vascular epithelium into the bloodstream or across the blood-brain barrier to the 

meninges. Thus, the PAF-receptor has been suggested to serve as a gateway for Pnc 

invasion. The interaction between pneumococci and the cytokine-upregulated PAF-

receptors is mediated by the phosphorylcholine of the Pnc cell wall (Cundell et al. 

1995c). Phosphorylcholine is a determinant shared between the Pnc cell wall and the 

natural ligand PAF (Cabellos et al. 1992). Also, PspC has been shown to be an absolute 

requirement for Pnc traffic across the monolayers of rat and human brain microvascular 

endothelial cells (Ring et al. 1998). The opaque and transparent Pnc variants adhere to a 

similar degree to nonactivated epithelial and endothelial cells, but enhanced adherence 

to cytokine-stimulated cells or PAF-receptor-transfected COS-cells is limited to the 

transparent variants (Cundell et al. 1995c). This is consistent with the fact that 

transparent pneumococci produce readily invasive disease in vivo (Tuomanen 1997). 

The PAF-receptor is rapidly internalized after interaction with its natural ligand, and 

accordingly, pneumococci seem to invade the endothelial cell in a vacuole together with 

the PAF-receptor. Within the endothelial cell, the pathogen is either killed 

intracellularly or it transmigrates through the cell. Only transparent pneumococci seem 

able to transcytose through the endothelial cell monolayers in a significant proportion 

(Ring et al. 1998). 

 

3.3. Inflammation and shock 

3.3.1. Pneumolysin (Ply) 

The properties of Ply, along with its function as a pore-forming hemolysin, also include 

a role as a general inflammatory agonist (Braun et al. 1999). The ability of Ply to 

activate phopsholipase A in pulmonary artery endothelium has been suggested to 

mediate both the inflammatory response and direct lung damage. Once activated, 

phospholipase A breaks down a wide variety of cell-membrane phospholipids (Rubins 

et al. 1994). This results in the release of free fatty acids and lysophosphatides. These 
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metabolites of phospholipase activity are directly cytotoxic and potent neutrophil 

chemotaxins. The recruitment and activation of neutrophils further contributes to the 

inflammatory response and lung damage. The ability of Ply to activate the classical 

complement pathway without the need for specific antibody further enhances the 

inflammation. Ply stimulates the production of inflammatory cytokines such as TNF-α 

and IL-1β by human monocytes (Houldsworth et al. 1994). Furthermore, Ply is the 

main inducer of nitric oxide (NO) production in macrophages. NO production during 

inflammation is an essential element of antimicrobial immunity, but it may also 

contribute to the host-induced tissue damage (Braun et al. 1999). 

 

3.3.2. Autolysin (LytA) 

The major enzyme responsible for Pnc cell wall turnover is autolysin, N-acetyl-

muramoyl-L-alanine amidase (LytA). It is a cell wall-associated protein that belongs to 

the family of Pnc CBPs, which are held on the Pnc surface by docking them non-

covalently with the choline of the cell wall. LytA is responsible for the degradation of 

the peptidoglycan backbone of pneumococcus, which leads to cell lysis (Tomasz 1984). 

Thus, activity of LytA allows the release of intracellular toxins (e.g., Ply) and highly 

inflammatory cell wall fragments. The enzyme is activated under conditions in which 

biosynthesis stops, such as nutrient starvation, the end of logarithmic phase of growth or 

penicillin treatment (Tuomanen et al. 1990; Mitchell 2000). Several studies have 

demonstrated the role of LytA in Pnc virulence. LytA-negative mutants are less virulent 

than wild-type pneumococci in a mouse model after intranasal challenge (Berry et al. 

1989a). Human lysozyme released upon infection and inflammation has been shown to 

trigger LytA thereby enhancing the inflammation (Bruyn et al. 1992). Immunization of 

mice with LytA confers limited protection against intranasal challenge with wild-type 

pneumococci (Berry et al. 1989a). 

 

3.3.3. Cell wall and cell wall polysaccharide (CPS) 

The pneumoccoccal cell wall is composed of a sugar backbone consisting of alternating 

molecules of N-acetyl-muramic-acid and N-acetyl-glucosamine, which are connected to 

a three-dimensional network by pentapeptide side chains (Sande & Tauber 1999). In 

addition, the cell wall contains teichoic acid and lipoteichoic acids, the PSs covalently 

linked to peptidoglycan. 
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Teichoic acid is found in many gram-positive cell walls, but Pnc teichoic acid is unique 

in that it contains phosphorylcholine (Tomasz 1967; Mosser et al. 1970). This 

phosphorus-containing teichoic acid is designated as a cell wall polysaccharide (CPS), 

which is the major cell wall component of the pneumococcus. CPS is covalently linked 

to the peptidoglycan (Tomasz 1981) and is uniformly distributed on both the inside and 

outside of the cell wall. CPS functions as a recognition site for activation of the 

alternative complement pathway (Winkelstein et al. 1977, 1978) as well as for the 

binding of CRP (Mold et al. 1981) and LytA (Mosser & Tomasz 1970; Giudicelli et al. 

1984). The removal of CPS diminishes complement activation by cell wall components 

(Tomasz et al. 1989). 

 

Another important structure of Pnc cell wall is the lipoteichoic acid, the Forssman 

antigen (F-antigen). It is a teichoic acid similar to CPS containing phosphorylcholine 

and an additional covalently attached lipid material. Via its lipid moiety, this antigen is 

inserted into the plasma membrane. The F-antigen inhibits the function of LytA. During 

the stationary phase of growth Pnc cells release the F-antigen enabling the unrestrained 

autolytic activity of LytA and the destruction of the cell wall (Horne et al. 1985). 

 

The activity of LytA releases the components of the Pnc cell wall as fragments. The cell 

wall fragments induce release of proinflammatory cytokines from mononuclear 

macrophages (e.g., TNF-α, IL-1 and IL-6) (Tuomanen et al. 1986). The induction of 

proinflammatory cytokines triggers a complex network of additional inflammatory 

mediators. In animal models, injection of cell wall preparations has been shown to 

generate a strong inflammatory response and to recreate many features of Pnc 

pneumonia, meningitis and AOM (Tuomanen et al. 1986, 1987; Giebink et al. 1988). 

The phosphorylcholine-containing cell wall pieces directly activate the alternative 

complement pathway (Winkelstein & Tomasz 1977) and bind the acute-phase reactant 

CRP (Horowitz et al. 1987).  
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4. Host defense 

 
4.1. Mucosal immunity 

The first-line defense against pneumococci is the mucosal surface. In healthy 

individuals, the mucosae of the upper respiratory tract form a mechanical barrier against 

the spread of pneumococci from nasopharynx into surrounding tissues or lungs.  

However, if the mucosal surface is injured by a previous viral infection or by chemical 

or physical agents, it may not be able to withstand bacterial invasion. Depending on 

their specificity and the timing of their appearance, the defense mechanisms of the body 

surfaces are divided into two general categories: nonspecific constitutive mechanisms 

and specific induced mechanisms. 

 

4.1.1. Unspecific, constitutive mucosal defenses 

The nonspecific, innate mucosal defense mechanisms are continuously present and 

effective against most invading micro-organisms. Since it takes 5 to 7 days for the 

specific inducible defenses to appear, the nonspecific defenses are particularly 

important in cases where a person encounters the pathogen for the first time. 

Nonspecific mucosal immunity includes several different mechanisms, such as the 

physical adhesive barrier composed by the layer of mucus, cough reflexes, mucociliary 

transport, washing action of secretions (e.g., saliva and urine), and various antibacterial 

substances. The special antibacterial substances on mucosal surfaces that either kill the 

invading bacteria or inhibit their growth include lysozyme, lactoferrin and 

lactoperoxidase. Lysozyme is an enzyme, which is able to digest the peptidoglycan of 

bacterial cell walls. It is effective mainly against gram-positive bacteria, because the 

outer membrane of gram-negative bacteria protects the peptidoglycan of their cell wall. 

Lactoferrin is a protein that binds iron with high affinity and prevents bacterial growth 

by limiting the amount of free iron. Lactoperoxidase is an enzyme that produces toxic 

superoxide radicals, which are reactive forms of oxygen and harmful to many bacteria. 

 

The Pnc surface protein PspA has been found to specifically recognize and bind the 

iron-carrier protein lactoferrin (Hammerschmidt et al. 1999). Interaction of PspA with 

lactoferrin was observed in 88% of the clinical Pnc isolates (Hammerschmidt et al. 

1999). Both family 1 and family 2 PspAs bind lactoferrin (Håkansson et al. 2001). 
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Interestingly, lactoferrin binds to the same region of PspA that is most important in 

eliciting cross-protective immune responses (McDaniel et al. 1994; Tart et al. 1996; 

Håkansson et al. 2001). Thus, although PspA is highly variable between strains, there 

are apparently conformationally conserved regions of the molecule that are responsible 

for lactoferrin binding (Håkansson et al. 2001). The conservation of lactoferrin binding 

may be interpreted so that it is important and beneficial to the bacteria. The interaction 

between PspA and lactoferrin has been suggested to be a mechanism used by 

pneumococcus to overcome the iron limitation at mucosal surfaces. It has earlier been 

shown though, that lactoferrin does not support the growth of S. pneumoniae in an iron-

deficient medium (Tai et al. 1993; Brown et al. 2001). If pneumococci do not use 

lactoferrin for the acquisition of iron, it must play some other role in human infections. 

Lactoferrin inhibits complement activation and several other immune mechanisms 

(Broxmeyer et al. 1978; Kijlstra et al. 1982; Veerhuis et al. 1982; Kievits et al. 1985; 

Mattsby-Baltzer et al. 1996). Furthermore, lactoferrin receptors are known to exist on 

host cells. They may play a role in Pnc adherence by allowing lactoferrrin to form a 

bridge between the bacteria and host cells (Håkansson et al. 2001). Further studies are 

needed to clarify the importance of the interaction between PspA and human lactoferrin 

in the pathogenesis of Pnc infection. 

 

Normal nasopharyngeal, as well as intestinal and vaginal bacterial flora, may also be 

seen as part of the nonspecific mucosal defense. The bacterial species of normal flora 

compete with the pathogenic species for the same nutrients and available colonization 

sites. Resident oropharyngeal flora such as viridans streptococci are capable of 

antagonizing colonization with other streptococci (Johanson et al. 1970). Inhibition of 

Pnc growth by viridans streptococci has been demonstrated in vitro (Johanson et al. 

1970). The role of bacterial antagonism in preventing Pnc colonization and subsequent 

disease is unknown. It appears that episodes of AOM in children are preceded by 

colonization with large numbers of respiratory pathogens, such as S. pneumoniae, H. 

influenzae and M. catarrhalis. At the same time, the number of nonpathogens of the 

resident flora, in particular viridans streptococci, decrease (Faden et al. 1990). These 

findings suggest that an alteration in the normal bacterial colonization patterns may 

predispose to local Pnc disease (Faden et al. 1990). 
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4.1.2. Specific, induced mucosal defenses 

4.1.2.1. Common mucosal immune system (CMIS) 

The mucosal surfaces of the respiratory, gastrointestinal and genito-urinary tracts have a 

specialized common mucosal immune system (CMIS), which functions independently 

from the systemic immune system (McGhee et al. 1990, 1992). The CMIS consists of 

an integrated network of lymphoid cells, which work in concert with innate host factors 

to promote host defense. It has been suggested that about half of the number of human 

lymphocytes are found in association with mucous membranes and exocrine glands. 

The major effector function of the mucosal immunity is production and transport of 

antibodies into external secretions. IgA is the predominant isotype in most mucosal 

secretions. Other Ig isotypes are also found in secretions, but in substantially lower 

concentrations than IgA. In addition to the mucosa-associated antibody response, there 

is also a mucosa-associated cell-mediated response. It includes macrophages, mucosa-

specific mast cells, cytotoxic T-cells, as well as cytokines, chemokines and their 

receptors. This part of the mucosal immunity is, however, poorly understood.  

 

The organized accumulations of lymphoid and non-lymphoid cells situated directly 

underneath the epithelium at several sites of the mucosal lining form the so-called 

mucosa-associated lymphoid tissue (MALT). An important activity of the MALT is the 

production of special type of antibody, secretory IgA (sIgA). In the respiratory and 

digestive tracts the MALT is covered by a specialized epithelium, the follicle-associated 

epithelium. The follicle-associated epithelium comprises so-called M-cells, which are 

specialized for the uptake and transcytosis of macromolecules and micro-organisms 

from the luminal surface (Figure 4). The M-cells pass antigens from the mucosal 

surface to the underlying cells of the MALT, which leads to antigen processing and 

presentation, and the stimulation of specific B- and T-lymphocytes. The primed, IgA-

committed B-cells migrate to local lymph nodes and enter systemic circulation where 

they selectively home to the mucosal sites where the antigen was first encountered, but 

also to distant mucosal sites. After this, local synthesis and secretion of IgA occurs. 

Thus, exposure of one mucous membrane to a microbial antigen results in the 

production of sIgA also at distant mucosal surfaces. 

 

Over the past few years, it has become apparent that dendritic cells have an important 

role in mucosal immunity. They have been shown to be capable of mediating an 
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alternative, M-cell-independent mechanism for bacterial uptake across the intestinal 

mucosal surfaces. In this mechanism dendritic cells open the tight junctions between 

epithelial cells, extend dendrites from the epithelium and sample bacteria directly from 

the gut lumen (Granucci & Ricciardi-Castagnoli 2003). They have also been suggested 

to have a regulatory function in the control of mucosal immunity via producing 

regulatory cytokine IL-2 (Granucci & Ricciardi-Castagnoli 2003). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cells of the mucosa-associated lymphoid tissue (MALT) of the gut (Salyers et al. 1994, with 

permission). 

 

 

4.1.2.2. Secretory IgA (sIgA) 

The significance of IgA in the host defense is highlighted by the fact that the daily 

production of total IgA is considerably greater than that of the other Ig classes 

combined (Conley & Delacroix. 1987). Approximately 2/3 of the total Igs produced in 

humans are IgA (Conley & Delacroix 1987; Mestecky & McGhee 1987). In serum, IgA 

occurs in monomeric form and the proportion of IgA among all Ig classes is minor, 

being only approximately 13% (Stokes 1984). In external secretions, by contrast, the 

majority of antibodies belong to the IgA class. The IgA antibodies in secretions occur 
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predominantly in dimeric or tetrameric forms containing four to eight antigen-binding 

sites, respectively. This multivalence of IgA increases its avidity and enables it to 

agglutinate bacteria better than corresponding IgA monomers. IgA functions in an 

environment rich in proteolytic enzymes (Kilian et al. 1988). However, IgA is 

intrinsically resistant to proteolysis by common microbial and intestinal enzymes, futher 

enforced by association with SC (Almogren et al. 2003). This provides functional 

advantages to IgA when compared with Igs of other isotypes (Mestecky & McGhee 

1987; Kilian et al. 1988). 

 

 

                    
 

Figure 5. Structure of human secretory Ig A (sIgA). (Brock TD, Madigan MT, Martinko JM et al: 

Biology of Micro-organisms. Copyright© 1994 Prentice-Hall Inc. Reprinted with permission of Pearson 

Education, Inc., Upper Saddle River, NJ, p. 444.) 

 

 

MALT B-cells synthesize polymeric IgA covalently linked with a joining peptide (J 

chain) (Figure 5). The J chain is required for the binding of IgA to a special basolateral 

epithelial cell receptor, polymeric Ig receptor (pIgR) (Figure 6). The complex of IgA 

and pIgR traverses the epithelial cell in an endocytic vesicle by transcytosis and reaches 

the apical surface of the epithelium. At the apical surface proteolysis cleaves the pIgR 

between its extracellular and transmembrane domains releasing sIgA. Thus, the SC 

bound to the sIgA molecule, is an extracellular domain of the pIgR. In addition to sIgA, 

secretory form of IgM (sIgM) transported by the pIgR is also present in external 

secretions. However, the concentration of sIgM is considerably lower than that of sIgA 

because of the lower proportion of IgM-producing cells in mucosal tissues (Mestecky et 
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al. 1999). Furthermore, pentameric IgM may not be transported as well as polymeric 

IgA because of a molecular weight restriction in SC-dependent transport (Schiff et al. 

1983). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6. The transcytosis of dimeric IgA through epithelial cell layer to secretions. 1) The dimeric IgA 

(dIgA) is produced by the B-cells of the MALT. 2) dIgA binds IgA to polymeric Ig receptor (pIgR) via its 

J-chain. 3) The complex of dIgA and pIgR traverses the epithelial cell in an endocytic vesicle by 

transcytosis 4) The complex reaches the apical epithelial surface. 5) Proteolytic enzymes cleave the pIgR 

between its extracellular and transmembrane domains. 6) Secretory IgA (sIgA) is released in secretions. 

Figure modified from Kantele 1992.  

 

 

Previously, it was suggested that pneumococcus might have found a way of using pIgR 

to its own benefit: a laboratory strain of S. pneumoniae, R6x, was shown to be capable 

of invading a human nasopharyngeal cell line (Detroit 562) in a human pIgR-dependent 

manner (Zhang et al. 2000). However, when the study was extended to other Pnc strains 

and other cell lines, the generalization of such a mechanism was challenged (Brock et 

al. 2002). The human pIgR-dependent enhanced invasion of epithelial cells by 

LUMEN 

LAMINA 
PROPRIA 

      5) Proteolysis

pIgR 

B-cell 

dIgA 

sIgA 

MUCOSAL 
CELL LAYER 



 

 

50

 
 

pneumococcus seems to be a limited phenomenon that occurs in a strain-specific and 

cell type-specific manner. Under real-life conditions, it is probable that factors such as 

cleavage of pIgR from the apical surface, the relative inefficiency of apical-to-

basolateral transport and the presence of free SC and sIgA in the respiratory secretions 

should prevent pIgR-mediated internalization of pathogens (Kaetzel 2001). 

 

4.1.2.3. Function of sIgA 

The Fc region of sIgA is wrapped within the SC molecule, which renders the associated 

chains resistant to most endogenous proteases (Mestecky & Russell 1986) (Figure 5). 

The functional capacity of the sIgA molecule is further increased by its dimeric (or 

tetrameric) status (Karush et al. 1973). The important functions of mucosal sIgA 

antibodies are to help trapping bacteria in mucus and to prevent microbial adherence to 

mucosal cells by binding to proteins on the bacterial surface that mediate adherence. 

sIgA antibodies are able to neutralize microbial and other environmental toxins and 

enzymes, as well as viruses, by sterically blocking their binding to target cells or 

substrates (Gilbert et al. 1983; Mansa et al. 1986; Childers et al. 1989). Also, sIgA 

prevents the absorption of antigens from mucosal surfaces in the intestinal tract, a 

phenomenon called immune exclusion (Stokes et al. 1975; McGhee & Mestecky 1990). 

Prior enteric exposure to alimentary antigens diminishes the absorption of subsequent 

doses of the same substances in immunologically reactive form (Walker et al. 1972; 

Andre et al. 1974). During their passage through the mucosal epithelial lining, IgA 

antibodies may also have opportunity to neutralize intracellular pathogens, such as 

viruses (Mazanec et al. 1992). sIgA antibodies have no pro-inflammatory effect, and 

they do not efficiently activate complement or initiate phagocytosis (Russell et al. 1997; 

Stenfors 1999). By contrast, opsonization of bacteria with serum IgA has been shown to 

enable efficient phagocytosis (van Egmond et al. 2000). 

 

4.1.2.4. IgA subclasses 

Human IgA occurs in serum and secretions as two subclasses, IgA1 and IgA2. These 

subclasses differ from each other in several aspects including minor differences in the 

primary structure, carbohydrate composition, antigenic properties, and sensitivity to the 

proteolysis by bacterial IgA1-proteases. A major difference between the two human 

subclasses occurs in the hinge region: IgA2 molecules lack a 13-amino-acid segment 
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found in the hinge region of IgA1 molecules that contains five carbohydrate moieties O-

linked to serin (Underdown et al. 1994). 

 

The IgA1- and IgA2-secreting cells are distributed in different ratios in the different 

lymphoid tissues of the human body. In general, most lymphoid tissues show a 

predominance of IgA1-producing cells. However, in secretory lymphoid tissues the 

IgA2 production is relatively enhanced when compared to the nonsecretory lymphoid 

organs, such as peripheral lymph nodes and spleen (Kett et al. 1986). Correspondingly, 

the IgA1 and IgA2 antibodies are characteristically distributed in body fluids: serum 

IgA is mainly of subclass IgA1, while IgA2 is more prominent in external secretions 

(Delacroix et al. 1982). The proportion of IgA2 of the total IgA in serum is usually 11 

to 23% and in secretions 26 to 41% (Delacroix et al. 1982). 

 

The extended hinge region of IgA1 molecules renders them highly susceptible to the 

IgA1-proteases produced by several important mucosal pathogens, including S. 

pneumoniae, H. influenzae, Neisseria meningitidis and Neisseria gonorrhoeae 

(Brandtzaeg 1985; Mestecky & Russell 1986; Conley & Delacroix 1987; Mestecky & 

McGhee 1987) as well as some members of resident oral or pharyngeal normal bacterial 

flora (Kilian et al. 1989; Frandsen et al. 1991). Bacterial IgA1-proteases enable mucosal 

pathogens to evade Fc-dependent functions of the predominant Ig isotype on mucosal 

surfaces. These proteases are thought to be important for the ability of the bacteria to 

colonize human mucosal surfaces in the presence of specific sIgA1 antibodies. Since the 

IgA2 antibodies are resistant to bacterial IgA1-proteases, the pronounced production of 

IgA2 antibodies in secretions may offer a functional advantage for the defense of 

mucosal surfaces against the IgA1-protease-producing bacteria. 

 

4.1.2.5. Early maturation of the mucosal immune system 

There is a contradiction between the relatively early appearance of sIgA in external 

secretions and the much later appearance of IgA in serum. Although adult levels of IgA 

in serum are reached only in early adolescence, the sIgA system has in several studies 

reported to have a remarkably rapid maturation pattern (Allansmith et al. 1968; Selner 

et al. 1968; Gleeson et al. 1982; Mellander et al. 1984; Taubman et al. 1989). At the 

same time, there are other studies that have suggested a slower maturation of secretory 

immunity. Burgio et al. (1980) reported that the concentrations of total salivary sIgA 
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increased gradually during infancy, but attained adult levels in unstimulated saliva only 

by the age of 6 to 8 years and in stimulated saliva at the age of 2 to 4 years. 

Furthermore, Fitzsimmons et al. (1994) found that sIgA can be detected in the saliva of 

infants within the first week after birth, but the levels of sIgA remain low during the 

first 18 months of life, at the very time when the infant is susceptible to infections by 

mucosal pathogens. In the case of S. pneumoniae, mucosal immunity has been 

suggested to be immature in young children compared to adults who show significantly 

higher specific IgA activity against pneumococcus than children (Lindberg et al. 1993). 

This could partly explain the high incidence of Pnc carriage and Pnc AOM in infants. 

Nasopharyngeal carriage of Pnc serotypes that are relatively poor in inducing immunity 

in children tends to last a longer than the carriage of more immunogenic serotypes 

(Gray et al. 1980). This suggests that local antibodies are important in limiting the 

duration of Pnc carriage. 

 

The mucosal immunity particularly to bacterial PSs has been suggested to mature earlier 

than the systemic immunity (Pichichero et al. 1981). Serum IgG to Pnc PSs is rarely 

detected in children before 18 months of age, whereas sIgA to Pnc PSs can be detected 

in nasopharyngeal secretions of children as early as at 6 months of age (Virolainen et al. 

1995; Nieminen et al. 1996). The suggested more rapid appearance and development of 

anti-PS IgA in secretions than anti-PS IgG in serum could be related to a greater 

antigenic stimulation initially occurring at the mucous membranes (Tomasi et al. 1972). 

This important potential of infants to respond by production of sIgA should be taken 

into consideration in the design of new vaccines. 

 

4.1.3. Investigation of mucosal immunity 

Different immunohistochemical methods have been used to study the cellular types of 

CMIS and the secretion of Igs (Brandtzaeg 1989). Polyclonal and monoclonal 

antibodies have been used in direct and indirect immunofluorescence for the detection 

of IgA and IgA subclasses in cells and tissues (Crago et al. 1984; Brandtzaeg et al. 

1986; Conley & Delacroix 1987). 

 

The measurement of specific antibodies in secretions with enzyme immunoassay (EIA) 

has been widely adopted. Saliva, breast milk and colostrum are probably the most 

studied fluids because of their easy accessibility, while other secretory fluids are less 



 

 

53

 
 

accessible. In contrast to working with serum, most mucosal secretions are difficult to 

collect, standardize and assay, because of factors such as viscosity, presence of bacteria, 

desquamated cells and bacterial proteases (Jackson et al. 1999). In addition, the stability 

of different secretions during long-term storage is variable. 

 

Specific antibody-secreting cells (ASCs) can be enumerated in peripheral blood with an 

enzyme-linked immunospot assay (ELISPOT) (Czerkinsky et al. 1983; Sedgwick et al. 

1983). The B-cells are constantly circulating through the lymphatics and blood back to 

the peripheral tissues (Gowans et al. 1964). The B-cells committed to mucosal sites are 

present in the peripheral blood for a limited period of time after an antigen challenge, 

before homing to different exocrine tissues. The appearance of these antigen-specific 

ASCs in blood can be measured. In the ELISPOT method, cell suspensions containing 

ASC are incubated on solid phase to which a specific antigen has been conjugated. The 

antibody attaches to the latter within the immediate microenvironment of the ASC, 

producing localized zones of bound antibody, which are subsequently developed as 

visual ‘spots’ in the EIA. 
 

4.2. Systemic immunity 

4.2.1. Antibody-independent clearance of pneumococci 

The spleen plays a major role in antibody-independent Pnc sequestration and 

contributes to resistance against Pnc infections in several ways. It is thought to be 

important in the synthesis of antibodies, in phagocytosis and clearance of blood-borne 

antigens in the non-immune host (Wara 1981). The spleen also plays a role in the 

activation of the alternative complement pathway (Wara 1981). Patients who have 

undergone splenectomy face a greatly increased risk of invasive bacterial diseases, S. 

pneumoniae being responsible for >50% of these episodes (Gillespie 1989). After IgM 

and IgG have appeared, the liver preferentially clears pneumococci (Schulkind et al. 

1967). 

 

The intact complement system plays a biologically significant role in vivo in the host's 

defense against S. pneumoniae (Winkelstein 1981, 1984). Complement deficiencies 

have been associated with an increased susceptibility to Pnc diseases. The activation of 

the alternative complement pathway takes place in the absence of specific antibodies. 

Pneumococci are potent activators of the alternative pathway, CPS being the active cell 
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wall component (Winkelstein & Tomasz 1978). Also the Pnc capsule can activate the 

alternative pathway. However, the complement activation by the Pnc capsule is 50-100 

times less efficient than with CPS with variation among different serotypes (Fine 1975). 

The complement is not able to produce bacterial lysis in gram-positive pneumococci: 

although the membrane attack-complex forms normally, it is inserted only 10-15nm into 

the peptidoglycan (Joiner et al. 1983). Thus, opsonization for phagocytosis by the 

deposition of the complement component C3b on the bacterial surface is the main way 

in which complement proteins act in the defense against S. pneumoniae (Gillespie 

1989).  

 

The non-antibody-mediated defense mechanisms against pneumococcus may also 

involve phagocytosis mediated by lectins (lectinophagocytosis) (Ofek et al. 1988). 

Lectins are host glycoproteins that specifically recognize certain carbohydrate 

structures. Serum components that belong to the family of lectins include pulmonary 

surfactant proteins, such as surfactant proteins SP-A and SP-B, CRP and mannose-

binding lectin (MBL) (Ofek et al. 1995; Tino et al. 1996; Schagat et al. 1999). They 

combine with complementary carbohydrates on micro-organisms and special receptors 

on phagocytes, thereby enhancing phagocytosis in the absence of opsonins, such as 

antimicrobial antibodies, C3b and C3bi fragments (Ofek et al. 1995). However, 

lectinophagocytosis is dependent on the Pnc serotype and is thus not likely a general 

defense mechanism against all pneumococci (Alonso de Velasco et al. 1994). 

In the absence of specific antibodies, CRP may facilitate the clearance of pneumococci 

(Boulnois 1992). CRP was first identified by its ability to bind to the CPS from the Pnc 

cell wall. The classical complement pathway is activated via direct binding of the C1q 

component of complement to ligand-fixed CRP (Volanakis et al. 1974). In this regard 

CRP acts as a component of nonspecific defense against bacterial disease in the 

preimmune phase of infection. 

 

4.2.2. Antibody-dependent clearance of pneumococci 

The humoral and cellular arms of the immune system act in concert to defend the host 

against Pnc infection. Once an immunocompetent individual has been colonized or 

infected by pneumococcus, an immune response against capsular PS, CPS and Pnc 

proteins will be mounted (Gray et al. 1981, 1983; Briles et al. 1987; Renneberg et al. 

1991; Rapola et al. 2000; Soininen et al. 2001). The importance of serum antibodies in 
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protection against systemic disease is clear, while it becomes less clear in infections 

restricted to the mucosae. Invasive diseases caused by encapsulated bacteria occur 

frequently in infants and children. Infants become susceptible to these infections after 

the loss of maternally transferred serum antibodies, since they are not yet able to mount 

a sufficient systemic immunity to limit the spread of bacteria.  

 

In the presence of anti-capsular antibodies, pneumococci are rapidly cleared from the 

blood, mainly by the liver and to a lesser extent by the spleen. Complement components 

are necessary for effective clearance. Antibodies to capsular PSs and CPS activate the 

classical complement pathway. Opsonization of pneumococci by type-specific 

antibodies and/or complement components is crucial for phagocytosis by macrophages 

or neutrophils. The binding of type-specific anticapsular antibodies to the capsule 

changes the structure of the Pnc surface so that phagocytosis is facilitated. Once 

ingested and entrapped in a phagosome pneumococci are readily killed by phagocytic 

cells (Johnston 1991). 

 

The bacterial PSs induce production of anti-capsular antibodies by a thymus-

independent or T-cell-independent (TI) mechanism. They can interact with B-cells and 

stimulate clonal expansion of B-cells by direct binding and cross-linking the B-cell 

receptor, the membrane-bound Ig. The result is the production of a clonal population of 

short-lived terminally differentiated antibody-producing plasma cells. The measurable 

effect in adults is a small rise in IgM but a more substantial increase in IgG (Barrett et 

al. 1986; Chudwin et al. 1987). The B-cell response is enhanced by the presence of 

opsonins bound to the PS antigen, in particular the cleavage products of complement 

factor C3 that acts as a ligand for complement receptor 2 (CR2 or CD21) (Griffioen et 

al. 1991). Young children express CR2 poorly and this in part explains their poor 

response to Pnc PS antigens (Griffioen et al. 1992). Once a B-cell becomes an antibody-

producing plasma cell, it has a short lifespan and will undergo cell death in the space of 

only a few days, and immunologic memory is not generated. 

 

Protein antigens are referred to as thymus-dependent or T-cell-dependent (TD) antigens, 

since the immune response to them uses the co-operation of B-cells and stimulated T-

cells (Noelle et al. 1991). For the proper activation and differentiation of protein 

antigen-specific B-cells to memory cells or antibody-producing plasma cells, the 
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interaction between B-cells and helper T-cells and cytokine-mediated events are 

required (Noelle et al. 1990). TD responses are characterized by the induction of 

memory, which is shown by a booster effect upon subsequent immunizations, affinity 

maturation, and extensive Ig class switching (AlonsoDeVelasco et al. 1995). 

 

4.2.3. Investigation of systemic immunity 

EIA is the currently recommended technique for determining the concentration of serum 

antibodies to Pnc capsular PS and protein antigens (Siber et al. 1989). The EIA 

techniques may also be used to measure the relative antibody avidity to different types 

of antigens. The binding of an antibody to an antigen conjugated in solid phase may be 

prevented either by competitive inhibition using decreasing concentrations of a free 

antigen (Devey et al. 1988; Goldblatt 1997) or by eluting the antibody from the antigen 

by a dissociating agent, such as thiocyanate (Pullen et al. 1986; Goldblatt et al. 1993, 

1997), urea (Hedman et al. 1989) or diethylamine (Devey et al. 1988; Goldblatt et al. 

1993, 1997). 

 

Since opsonin-dependent phagocytosis is the primary defense mechanism against S. 

pneumoniae, a variety of techniques measuring the opsonophagocytic activity of serum 

antibodies against Pnc capsular PSs have been developed (Esposito et al. 1990; Lortan 

et al. 1993; Vitharsson et al. 1994; Romero-Steiner et al. 1997; Jansen et al. 1998; 

Vidarsson et al. 1998; Martinez et al. 1999). These include radioisotopic, flow 

cytometric, microscopic, and viability (or killing) assays. Most of them are performed 

by using human polymorphonuclear leukocytes as the effector cells. Some assays have 

also been adapted to utilize culturable phagocytes (differentiated HL-60 cells) (Romero-

Steiner et al. 1997; Martinez et al. 1999). In addition to these in vitro assays, many 

studies use animal models to investigate, for instance, the immunogenicity and 

protective efficacy of Pnc conjugate vaccines in mice, rats, chinchillas, or infant 

monkeys (Paton et al. 1991; Peeters et al. 1992; Vella et al. 1992; Giebink et al. 1993; 

Lee et al. 1994; Rodriguez et al. 1998; Jakobsen et al. 1999; van der Ven et al. 1999). 

 

 

 

 

 



 

 

57

 
 

5. Pneumococcal vaccines 
The search for an efficient vaccine against pneumococcus has continued for a long time. 

The vaccine development began originally at the beginning of the 20th century (year 

1914), when attempts to induce protective immunity against pneumococcus in humans 

by vaccination with whole-cell killed pneumococci turned out to be unsuccessful. In the 

1930s, the immunogenicity of purified capsular PSs was demonstrated and the first Pnc 

PS vaccine was developed. However, along with the demonstration of the therapeutic 

efficacy of antibiotics, the enthusiasm for Pnc vaccine development ceased for some 

decades. Despite the use of antibiotics, the mortality rate of systemic Pnc diseases 

remained high (Gillespie 1989). This, with the emergence of the first penicillin-resistant 

pneumococci in 1965 (reviewed in: Appelbaum 1992) led to renewed efforts to develop 

improved Pnc vaccines. At the moment, increasing antibiotic-associated resistance 

complicates disease management and highlights the importance of effectively 

preventing Pnc diseases. 

 

The clinical efficacy of the current Pnc vaccines is based on the production of 

opsonizing anti-capsular antibodies, which have proved to be important in the host 

defense against Pnc disease (Bruyn et al. 1992). The data on the pathogenesis of Pnc 

infection and development of new vaccination strategies in animal models (including 

immunization with Pnc proteins and mucosal immunization) have accumulated during 

the past few years. This has opened up new possibilities for the prevention of Pnc 

infections by immunization. Furthermore, clinical trials on combination vaccines 

including Pnc vaccine are underway with the aim of decreasing the number of shots 

administered during early childhood (Choo et al. 2000a; Dennehy 2001). 

 

5.1. Systemic immunization 

5.1.1. Pneumococcal polysaccharide vaccines 

Purified Pnc capsular PSs used as a vaccine can induce type-specific anticapsular 

antibodies, which are protective against Pnc disease in healthy adults. The efficacy of 

the first Pnc PS vaccine against bacteremic Pnc disease was demonstrated in the 1930s 

and 1940s. In 1977, a 14-valent vaccine containing 50µg of capsular PSs of each 14 

serotypes was licensed. In 1983, the valency was increased to 23 serotypes. The vaccine 

contains 25µg of each capsular PS of the 23 serotypes most frequently causing disease 
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in the U.S. The 23-valent vaccine remains the current preparation of Pnc PS vaccine. 

Pneumocccal PS vaccine protects healthy non-elderly, immunocompetent adults against 

pneumonia, invasive disease and death (reviewed in: French 2003).  

 

Although safe and efficacious among healthy adults, the current Pnc PS vaccine has 

some apparent shortcomings. First, young children respond poorly to Pnc PS vaccines. 

A number of clinical trials on the Pnc capsular PS vaccines have demonstrated limited 

or no evidence of efficacy among children less than 2 years of age (Douglas et al. 1983; 

Koskela et al. 1986; Leinonen et al. 1986). Second, the PS molecules are of TI nature 

and the important features of these antigens are poor immunogenicity, as well as a lack 

of ability to induce affinity maturation, isotype switch and immunologic memory (Stein 

1992). Thus, revaccination with a PS vaccine does not result in booster responses but 

instead leads to a similar or even reduced serological response in comparison to the 

response to primary vaccination (Mufson et al. 1991; Musher et al. 1993). 

Consequently, the antibody concentrations and eventually the protection diminish in the 

course of time. Third, the Pnc PS vaccine does not protect certain high-risk groups such 

as immunologically incompetent individuals and elderly against Pnc pneumonia or 

invasive disease (reviewed in: French 2003). Finally, the Pnc PS vaccine does not 

provide significant protection against mucosal Pnc diseases, such as AOM in young 

children, or against the spread of resistant strains from person to person (reviewed in: 

Eskola et al. 1999). 

 

5.1.2. Pneumococcal conjugate vaccines 

In order to obtain improved vaccines for infant use, Pnc capsular PSs of the 

epidemiologically most important Pnc serotypes have been covalently coupled with 

various carrier proteins, such as diphtheria toxoid, tetanus toxoid and the outer mebrane 

protein complex (OMPC) of N. meningitidis group B. Covalent coupling of PS antigen 

with a protein carrier converts the nature of the vaccine into TD and increases the 

immunogenicity of the hapten molecule. The antigen-presenting cells take up the 

conjugated PS-protein vaccine molecule, internalize it via the membrane-bound Ig and 

present the peptides of the protein to the helper T-cells in association with the major 

histocompatibility complex class II (MHC II) molecules. This induces the helper T-cells 

to stimulate PS-specific B-cells to mature either into antibody-producing plasma cells or 

into memory cells (Schneerson et al. 1980; Lanzavecchia 1985; Siber 1994). 
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T-cell help associated with Pnc conjugate vaccines leads to several benefits. Long-lived 

memory B-cells are produced, which leads to the induction of a strong antibody 

response after revaccination (Granoff et al. 1993; O'Brien et al. 1996; Åhman et al. 

1998). Additionally, T-cell signaled rearrangements of the Ig variable region leads to 

affinity maturation of the antibody response, improved antibody-antigen ‘fit’ and an 

increased opsonising function (Goldblatt 1998). Finally, mucosal immune responses are 

enhanced with the production of mucosally active IgG (Choo et al. 2000b; Nurkka et al. 

2001b).  

 

The first Pnc conjugate vaccine, a 7-valent vaccine PncCRM7, was licensed in the U.S. 

in 2000 (Prevnar, Wyeth-Ayerst Laboratories, Philadelphia, USA) and in Europe in 

2001 (Prevenar). This vaccine includes Pnc serotypes 4, 6B, 9V, 14, 18C, 19F and 

23F conjugated to a nontoxic mutant diphtheria toxin known as CRM197. Another 

investigational 7-valent vaccine, PncOMPC, contains same serotypes as PncCRM7, but 

the carrier protein is the meningococcal OMPC. The Pnc conjugate vaccines with higher 

valencies are now in ongoing clinical trials (Wuorimaa et al. 2001; Dagan et al. 2002; 

Huebner et al. 2002; Obaro et al. 2002; Puumalainen et al. 2002). In the 9-valent 

vaccine serotypes 1 and 5 are added, while the 11-valent vaccine includes also serotypes 

3 and 7V (Fedson et al. 1999; Hausdorff et al. 2000b; Wuorimaa et al. 2002). In 

practise, vaccine valency has proved technically difficult to increase, the limiting factor 

being the quantity of carrier protein that can be incorporated whilst maintaining 

immunogenicity (reviewed in: Wuorimaa & Käyhty 2002). Use of multiple carriers or 

alternate carrier proteins may provide a solution to this problem (Nurkka et al. 2002; 

French 2003). 

 

The Pnc conjugate vaccines have been shown to be safe and immunogenic already in 

early infancy (Käyhty et al. 1995; Dagan et al. 1996a; Mbelle et al. 1999; Puumalainen 

et al. 2002). They induce high concentrations of serum antibodies (Rennels et al. 1998; 

Åhman et al. 2001; Eskola et al. 2001) and reduce nasopharyngeal carriage of vaccine 

serotypes (Obaro et al. 1996; Dagan et al. 1996a, 1997, 1998; Mbelle et al. 1999). 

PncCRM7 has been shown to be highly efficacious in preventing vaccine-serotype 

invasive disease in young children (Black et al. 2000) and modestly beneficial against 

AOM (Black et al. 2000; Eskola et al. 2001). Because Pnc conjugate vaccines reduce 

carriage and disease in the vaccinated population, transmission to the nonvaccinated 
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population may also be decreased, thus reducing the overall burden of Pnc disease on a 

population level (Pelton et al. 2003). This effect is often referred to as “herd immunity” 

or the “indirect” effect of immunization. The impact since the licensure of a 7-valent 

Pnc conjugate vaccine on invasive disease epidemiology has been recently determined 

in the U.S. A notable fall in disease incidence was seen both in vaccinated and 

unvaccinated children under 5 years of age, but also in older children and adults. These 

findings suggest a herd immunity effect in non-vaccinated individuals (Shinefield et al. 

2002; Whitney et al. 2003). 

 

Studies on the impact of Pnc conjugate vaccines with different valencies and protein 

carriers on Pnc nasopharyngeal carriage have shown that immunization with these 

vaccines (4-, 7- and 9-valent) results in a decrease of carriage by vaccine serotypes but 

in an increase by non-vaccine serotypes (Obaro et al. 1996; Mbelle et al. 1999; Dagan 

et al. 1996a, 1997, 1998, 2002). This effect may be due to colonization with new 

pneumococci or through capsular transformation of pneumococci in vivo (Barnes et al. 

1995; Nesin et al. 1998). However, it has not been definitively determined if the 

increase in carriage by non-vaccine types is due to true replacement or just an 

unmasking of already present nasopharyngeal serotypes (Pelton et al. 2003). In a study 

evaluating PncCRM7 in the American Indian population using a highly sensitive 

immunoblot assay to determine the effect of conjugate vaccine on nasopharyngeal 

carriage, an association of PncCRM7 with true replacement carriage was detected 

(Pelton et al. 2003). Furthermore, in two clinical trials conducted in Finland evaluating 

the effect of 7-valent Pnc conjugate vaccines on Pnc AOM, replacement disease was 

observed. In the first trial with PncCRM7, an increase of 33% in nonvaccine serotype 

AOM was shown (Eskola et al. 2001). With another investigational 7-valent vaccine, 

PncOMPC, the rate of AOM episodes due to all other Pnc serotypes was 27% higher 

among the vaccine recipients than in the control group (Kilpi et al. 2003). Whether 

nasopharyngeal replacement is associated with invasive replacement disease is not yet 

definitively clear. In the trial on invasive Pnc disease in the U.S., significant 

replacement disease was not observed (Black et al. 2001; Whitney et al. 2003). 

 

Current information is insufficient to suggest whether Pnc conjugate vaccines would be 

indicated to other target groups than infants. Although Pnc conjugate vaccines are able 

to induce better antibody responses than a Pnc PS vaccine in healthy adults (Nieminen 
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et al. 1998; Wuorimaa et al. 2001), they do not seem to offer any significant advantages 

to the PS vaccine in an adult population (Ahmed et al. 1996; Powers et al. 1996). With 

the substantially greater cost of the Pnc conjugate vaccines in comparison with the Pnc 

PS vaccine, it will be important to clearly demonstrate efficacy of the conjugate vaccine 

in the target populations along with safety and acceptability. Future clinical trials of Pnc 

conjugate vaccines will include elderly to find out whether conjugates prove to be 

efficacious in protection against Pnc pneumonia (Pelton et al. 2003). 

 

The main problem with the Pnc conjugate vaccines is that only a limited number of 

types may be included in the conjugated formulation due to logistic difficulties in the 

manufacturing process, and the attendant high cost. Thus, the choice of antigens to be 

included in a Pnc conjugate vaccine has to be based primarily on the predominant 

serotypes causing disease in the target population. It is apparent that a vaccine, which is 

based on the most prevalent serotypes among children in one country, may not be 

appropriate for adults in the same region or children in a different region of the world. 

This is because of the differences in Pnc serotype prevalence in various age groups and 

localities. In accordance with this, the serotypes included in the 7-valent conjugate 

vaccine provide different levels of coverage in different geographic regions (Hausdorff 

et al. 2000b). Adding serotypes may increase coverage, especially in developing 

countries, where serotypes not included in PncCRM7 are more common (e.g., serotypes 

1 and 5). It appears that especially the 9-valent and 11-valent conjugate vaccines might 

have the potential to prevent a large portion of the cases of Pnc pneumonia and 

meningitis in the developing world (Hausdorff et al. 2000a). However, when the 

number of serotypes is increased, production costs of the vaccine also increase. 

Regardless of its efficacy, an expensive vaccine may be unlikely to be used on a large 

scale in the developing world. 

 

5.1.3. Pneumococcal protein vaccine candidates 

The problems with the Pnc PS and conjugate vaccines have stimulated an interest in 

alternative Pnc vaccination strategies. A promising complementary or alternative 

approach for prevention of Pnc infections is to develop vaccines directed against an 

antigenic moiety common to all Pnc serotypes, such as a Pnc protein antigen. The use of 

Pnc proteins would have several advantages. As TD antigens they are expected to be 

immunogenic even in young children and to induce immunological memory. Pnc 
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proteins would provide protection against pneumococci regardless of the serotype. 

Thus, the development of Pnc protein vaccines may overcome the problem of serotype 

replacement. Pnc protein vaccines could be used to fill the gaps in protection provided 

by the Pnc PS or conjugate vaccines and, if highly successful, they might be even able 

to act as stand-alone vaccines. They have potential to cover the high-risk target groups 

who may not be covered by the current conjugate vaccine formulations, such as young 

infants in the developing countries and the elderly. Protein antigens can be produced 

with low expenses by recombinant technology. However, before Pnc protein antigens 

can be considered for large-scale human trials, their protective efficacy has to be clearly 

established in animal models. 

 

Diversity among protein antigens is an important consideration in the selection of 

vaccine candidates. Non-variable protein antigens could potentially protect against a 

whole population of bacteria, provided that they have a critical function. However, 

many of the proteins required for critical bacterial functions show diversity among the 

strains. Despite the diversity, the proteins may still offer cross-protection. A number of 

proteins that act at different stages of the pathogenic process contribute to the virulence 

of S. pneumoniae. It has been suggested that vaccination with a mixture of different Pnc 

virulence proteins might provide a higher degree of protection than any antigen alone 

(Briles et al. 2000a; Ogunniyi et al. 2001). 

 

Several Pnc proteins have been considered as potential vaccine candidates, including 

PspA, PsaA and inactivated Ply (Paton 1998). These proteins may be used either as a 

pure protein (Alexander et al. 1994; Talkington et al. 1996; McDaniel et al. 1997), 

conjugated with Pnc PSs (Kuo et al. 1995; Michon et al. 1998) or as fusion proteins 

combined with immunomodulating molecules (Wortham et al. 1998). Immunization of 

mice with inactivated or recombinant Ply toxoid induced enhanced survival against 

intraperitoneal challenge with several Pnc strains of different serotypes (Alexander et 

al. 1994; Lee et al. 1994). Similarly, mice immunized with PspA or with truncated 

PspA molecule were protected against challenge with virulent pneumococci (McDaniel 

et al. 1991; Tart et al. 1996; Briles et al. 1996b, 1998). Also, administration of PsaA 

together with an appropriate adjuvant protected mice against Pnc challenge (Talkington 

et al. 1996). 
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The novel Pnc vaccine candidates include several proteins, such as PspC, PpmA 

(putative proteinase maturation protein A) (Overweg et al. 2000b), Pht (Pnc histidine 

triad)-protein family (Adamou et al. 2001), BVH-3 and BVH-11 (Hamel et al. 2002). 

Immunization of mice with PspC protected against challenge with a Pnc strain that 

expressed PspA but not PspC. The PspA- and PspC-cross-reactive antibodies were 

directed to the proline-rich domain present in both molecules (Brooks-Walter et al. 

1999). PpmA is a Pnc surface protein possibly playing a role in the maturation of 

surface proteins or secreted proteins. It is able to elicit protective, cross-reactive 

antibodies in rabbits (Overweg et al. 2000a). The immunization of mice with PhtA, 

PhtB or PhtD from the Pht-family has been shown to induce protection against invasive 

Pnc disease with diverse Pnc serotypes (Adamou et al. 2001). The function of these 

proteins, however, is still unknown. BVH-3 and BVH-11 are ubiquitous, conserved 

surface proteins of pneumococcus that are immunogenic and show protective efficacy in 

animal models against Pnc pneumonia and sepsis (Hamel et al. 2002). Both proteins 

have been well characterized and may be produced by recombinant technology. 

 

Human trials on immunization with Pnc proteins are sparse at the moment. Nabors et al. 

(2000) immunized healthy adults with a single recombinant PspA variant and were able 

to stimulate broadly cross-reactive antibodies to heterologous PspA molecules. These 

antibodies have been shown to protect mice passively from fatal infection with S. 

pneumoniae strains bearing heterologous PspAs (Briles et al. 2000c). 

 

5.2. Mucosal immunization 

Pneumococci enter the body via mucosal surfaces of the upper respiratory tract and 

mucosal immunization represents an attractive alternative for current systemic 

immunization strategies. The protection against Pnc acquisition or carriage and local 

Pnc diseases, such as AOM, are thought to depend on mucosal antibodies. Already in 

early studies, intranasal immunization of rabbits with pneumococci was shown to 

produce resistance to a subsequent challenge with the live organism in the absence of a 

detectable serum antibody (Bull et al. 1929). Following nasal immunization with killed 

pneumococci, the rabbits were also resistant to an intravenous challenge with a live 

organism, suggesting that local immunization may induce also systemic immunity 

(Walsh et al. 1936). 
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It appears that nasal-associated lymphoid tissue (NALT) and upper airway mucosal 

epithelium are able to process and present antigens and mount a specific immune 

response locally, as well as in distant mucosal sites, via distinct homing mechanisms. 

Available evidence based on the vaccine antigens appropriate for the preventing AOM 

has suggested that oral immunization can induce effective immune responses in the 

middle ear cavity and nasopharyngeal tissues. Immunization via the nasal route appears 

to be as effective as the oral route, may require a smaller antigen dose, and can be 

effective even with non-replicating agents. Human experience with intranasal 

immunization is limited at this time, but recent studies with live attenuated influenza 

virus vaccine have been encouraging (Gruber et al. 1996; Belshe et al. 1998, 2001). 

 

Several advantages have been linked to mucosal immunization. Mucosal immune 

responses induced by systemic immunization with the Pnc conjugate vaccines have 

been modest in infants and children (Choo et al. 2000b; Korkeila et al. 2000; Nurkka et 

al. 2001a, 2001b). However, immunization by mucosal (e.g. intranasal) route might 

possibly induce substantially stronger mucosal secretory IgA responses. Based on 

animal studies, mucosal immunization may induce antibody responses simultaneously 

in mucosal surfaces and serum (VanCott et al. 1996; Flanagan et al. 1999; Jakobsen et 

al. 1999; Seong et al. 1999). Local administration of Pnc vaccines would also be 

attractive due to its easiness, particularly in the developing world. Furthermore, the 

sIgA immune system has a potent immunological memory that is stimulated repeatedly 

by renewed contact with the antigen; this leads to a high level of production of specific 

IgA (McGhee & Mestecky 1990). Finally, mucosal immune responses have been 

suggested to develop early in life (Gleeson et al. 1982) and still function well in the 

elderly (Szewczuk et al. 1981; Garg et al. 1996). The possibility of exploiting the 

potential of young infants to respond to PS antigens by the early production of sIgA 

should be considered in the design of vaccines, particularly because of the high risks 

associated with infection by encapsulated bacteria. Similarly, elderly people are more 

susceptible to various infections, among these Pnc pneumonia. Aging has a generally 

negative effect on the immune system (Makinodan et al. 1991; Solana et al. 1998; 

Ginaldi et al. 2001). The mucosa-associated lymphoid system, however, is suggested to 

remain immunologically vigorous even during old age (Szewczuk et al. 1983; Smith et 

al. 1987; Russel et al. 1989). Garg and Subbarao (1992) have shown in a mouse model 
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that the response to a 23-valent PS-vaccine in the mucosa-associated mesenteric lymph 

nodes does not decline with age, but remains constant over the entire age range.  

Encouraging results regarding mucosal vaccination against pneumococcus have been 

obtained in animal models. Both oral and intranasal immunization of mice with PspA 

has elicited protective immunity against Pnc carriage and systemic disease (Wu et al. 

1997; Yamamoto et al. 1997). Intranasal immunization of mice with a mixture of the 

PsaA and PspA has proved to be highly protective against Pnc carriage (Briles et al. 

2000a). Mucosal immunization of mice with the Pnc capsular PS antigens or conjugate 

vaccine and an appropriate mucosal adjuvant induce both mucosal and systemic 

antibody responses and can protect against intranasal challenge with live bacteria 

(VanCott et al. 1996; Jakobsen et al. 1999; Seong et al. 1999). These data suggest that 

the mucosal vaccination is able to reduce Pnc carriage and disease. 

 

The experience with mucosal vaccination in humans is so far largely restricted to the 

use of the oral attenuated live viral vaccine against polio and bacterial vaccines against 

cholera and typhoid fever. At the moment, a viral intranasal vaccine against the 

influenza virus and an oral vaccine against the rotavirus are subjects of active 

investigation. Before a mucosal vaccination against Pnc disease can be considered in 

humans, more basic work will be necessary. The leap from animal studies to human 

trials requires a demonstration that antibodies to Pnc vaccine candidates protect humans 

against Pnc disease. Studies on natural immunity may support this idea and an 

understanding of additional aspects of antibody-mediated immunity in secretions may 

enable us to develop new methods of local protection against pathogens. However, 

because vaccine induced immunity may be better than natural immunity, these studies 

will not disprove the potential efficacy of vaccines. 

 

5.3. Other immunization strategies 

Other options of immunization to induce antibody responses against S. pneumoniae 

include the delivery of Pnc protein antigens either in recombinant carrier bacteria or in a 

form of nucleic acid vaccine (DNA vaccine). Protective responses against Pnc challenge 

have been obtained in mice with a recombinant Bacille Calmette-Guerin (rBCG) 

vaccine (Langermann et al. 1994) and an oral recombinant Salmonella vaccine (Nayak 

et al. 1998), both expressing PspA. In addition, protection against fatal Pnc infection 
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has been elicited in mice after intramuscular injection of a plasmid expressing PspA 

(McDaniel et al. 1997). 
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AIMS OF THE STUDY 
 

An active search for novel Pnc vaccine strategies is under way. Mucosal antibodies are 

expected to be relevant in the defense against Pnc carriage and Pnc AOM. In the future, 

mucosal vaccination may be a potential alternative for current Pnc immunization 

strategies. Understanding the development and significance of natural immunity is an 

important part of the vaccine development process. To this end, the aim of this thesis 

was to describe the natural development of salivary antibodies to Pnc protein and PS 

antigens in relation to Pnc carriage and AOM. The specific objectives were: 

� to determine the natural development of salivary IgA antibodies to three Pnc protein 

antigens (PsaA, Ply and PspA) and six Pnc capsular PS antigens (types 1, 6B, 11A, 

14, 19F and 23F) in children by age, and in relation to Pnc carriage and Pnc AOM 

(I, II).  

� to confirm the secretory origin of natural salivary IgA antibodies (I, II). 

� to study the subclass distribution of natural salivary IgA antibodies to one Pnc 

protein (PsaA) and one Pnc PS antigen (capsular PS of type 14) (III). 

� to evaluate if natural salivary antibodies to PsaA, PspA and Ply affect the risk of 

subsequent Pnc carriage and Pnc AOM (IV). 
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MATERIALS AND METHODS 

 

1. Study cohort and samples 

 
1.1. Study design and subjects 

This thesis consists of four studies. Studies I and II describe the natural development of 

salivary antibodies to three Pnc protein and six Pnc PS antigens after Pnc carriage or 

Pnc AOM in children of the FinOM Cohort Study. Study III describes the IgA1 and 

IgA2 distribution of natural salivary anti-protein and anti-PS antibodies. Study IV 

evaluates the associations of salivary anti-PspA and -PsaA antibodies with the risk of 

subsequent Pnc carriage and AOM. 

 

The FinOM Cohort Study was initially designed to examine the natural course and 

epidemiology of Pnc carriage, and the risk factors leading to Pnc carriage and 

subsequent Pnc AOM. Altogether 329 children were enrolled in the FinOM Cohort 

Study at two months of age at their second routine visit to the Hervanta child health 

center, in Tampere, and followed prospectively up until their second birthday. During 

the study, the children were immunized following the Finnish general vaccination 

schedule, which included the following vaccines: Bacille Calmette-Guérin (BCG) 

vaccine against tuberculosis, PDT vaccine against pertussis, diphtheria and tetanus, Hib 

vaccine against invasive infections caused by H. influenzae type b, inactivated 

poliomyelitis vaccine (IPV) against polio, and MMR vaccine against measles, mumps 

and rubella. The vaccination schedule does not include any Pnc vaccine. A special study 

clinic with a study doctor and one to three study nurses was established for the purposes 

of this study for a time period from April 1994 to July 1997. The children were 

scheduled to make altogether ten healthy visits to the study clinic at 2, 3, 4, 5, 6, 9, 12, 

15, 18 and 24 months of age for an interview and nasopharyngeal swabs (NP) for 

bacterial culture. The saliva and serum (5 ml of venous blood) samples were collected at 

the 6 (± 2 weeks), 12 (± 2 weeks), 18 (± 4 weeks) and 24 (± 4 weeks) month healthy 

visits. In case of respiratory illness or symptoms suggesting AOM, the parents were 

asked to bring their child to the study clinic and this event was recorded as a sick visit. 

During the sick visit, the study physician obtained the history of the current illness from 

the parent, performed a physical examination of the child, and collected a 
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nasopharyngeal aspirate (NPA) for bacterial culture. In case of AOM, myringotomy 

with aspiration of the middle ear fluid (MEF) was performed for etiologic diagnosis. 

AOM was diagnosed, if pneumatic otoscopy suggested effusion in the middle ear cavity 

and the child had concomitant signs or symptoms of acute infection. The resolution of 

each AOM was followed four weeks after the diagnosis at a check-up visit. 

 

Saliva samples from 17 healthy adults (15 females and two males, the mean age of 35 

years, resident in the Helsinki area) were obtained in order to measure the 

concentrations of natural antibodies in the saliva of adults.  

 

1.2. Definitions 

Acute otitis media (AOM) was defined as a visually abnormal tympanic membrane with 

regard to color, position and/or mobility suggesting middle ear effusion, with at least 

one of the following symptoms of acute infection: fever, earache, tugging at or rubbing 

of the ear, irritability, restless sleep, loss of appetite, acute gastrointestinal symptoms or 

other symptoms of respiratory infection.  

Any Pnc contact was defined as any NP, NPA and/or MEF culture positive for S. 

pneumoniae.  

Pnc AOM was defined as an AOM event with S. pneumoniae cultured from at least one 

MEF sample. 

Asymptomatic Pnc carriage was defined as NP culture obtained at the 6, 12, 18 or 24 

months’ healthy visit positive for S. pneumoniae.  

Pnc carriage without Pnc AOM was defined as NP or NPA but not concomitant MEF 

culture (if obtained) positive for S. pneumoniae. 

 

1.3. Subsets of the Finnish Otitis Media (FinOM) Cohort Study children 

Due to the fact that not all four saliva samples were available from each child, the 

number of children varied from one time point to another. Furthermore, because of the 

small volume of some of the saliva samples, we could not analyze concentrations of all 

antibody specificities in all of the samples.  

 

Study I: The concentration of IgA antibodies against PsaA, Ply and PspA were 

measured at 6, 12, 18 and 24 months of age in all available saliva samples. In addition, 

anti-PsaA, -Ply and -PspA IgA concentrations were determined in the saliva of 17 
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adults. The concentration of sIg antibodies against PsaA, Ply and PspA were measured 

in a subcohort of 168 children. The anti-PsaA, -Ply and -PspA IgG was determined in 

the saliva samples of 104 children and 16 adults. 

To evaluate the association between previous Pnc history and the development of 

salivary IgA antibodies, the children were divided at each time point into two categories 

on the basis of the NP, NPA or MEF cultures positive for S. pneumoniae on healthy or 

sick visits before the indicated age. The antibody concentrations were compared 

between children with and without culture confirmed Pnc findings. The categories were 

as follows: 

1. Pnc-negative children (Pnc-): children with no NP, NPA, or MEF cultures 

positive for S. pneumoniae on healthy or sick visits up to the age in question.  

2. Pnc-positive children (Pnc+): children with one or more NP, NPA, or MEF 

cultures positive for S. pneumoniae on healthy or sick visits up to the age in 

question. The Pnc+ children were further divided into two groups according to 

the type of Pnc contact they had experienced by that age: Pnc+ carrier children 

had one or more NP cultures (but no NPA or MEF cultures) positive for S. 

pneumoniae up to the time point, and Pnc+ sick children had one or more NPA 

or MEF cultures (regardless of the result of NP cultures) positive for S. 

pneumoniae up to the time point. 

The category of the child could change from one time point to another from a Pnc- to a 

Pnc+ category or from the Pnc+ carrier category to the Pnc+ sick category according to 

the Pnc culture findings, but never vice versa. 

 

Study II: The concentration of IgA antibodies against six Pnc capsular PSs were 

measured in subgroups of the FinOM Cohort Study saliva samples at 6, 12, 18 and 24 

months of age. Anti-1, anti-6B, anti-11A, anti-14, anti-19F and anti-23F IgA were 

analyzed from the saliva samples of 87, 241, 99, 225, 246, and 93 children, respectively. 

The types 6B, 14 and 19F were prioritized on the grounds of results from our earlier 

studies. In addition, anti-1, anti-6B and anti-14 IgA concentrations were determined in 

the saliva of 17 adults. The concentrations of anti-6B, anti-14 and anti-19F sIg 

antibodies were measured in a subcohort of 168 children. The anti-1, anti-6B and anti-

14 IgG were determined in saliva of 51 children and anti-11A, anti-19F and anti-23F 

IgG in saliva of another 59 children. In addition, anti-1, anti-6B and anti-14 IgG 

concentrations were measured in the saliva of 17 adults.  
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To evaluate the association between previous Pnc history and salivary anti-Pnc PS 

production, we analyzed the data at each time point in three categories, according to the 

Pnc culture results before the indicated age. When analyzing type-specific antibody 

data, the categories were established separately for each of the Pnc types 1, 6B, 11A, 

14, 19F and 23F. The categories were as follows: 

1. Pnc-negative children (Pnc-): children with no NP, NPA or MEF cultures 

positive for any Pnc type up to the age in question (this was a common 

category, regardless of which serotype antibodies were analyzed). 

2. Pnc-positive, serotype negative children (Pnc+ ST-): children with at least 

one NP, NPA or MEF culture positive for S. pneumoniae up to the age in 

question, but the Pnc type(s) did not include the type being analyzed. Thus, 

six different Pnc+ ST- categories were formed: Pnc+ 1-, Pnc+ 6B-, Pnc+ 11-

, Pnc+ 14-, Pnc+ 19F- or Pnc+ 23F-.  

3. Pnc-positive, serotype-positive children (Pnc+ ST+): children with at least 

one NP, NPA or MEF culture positive for S. pneumoniae up to the age in 

question; the cultured Pnc types included the type being analyzed. Thus, five 

different Pnc+ ST+ categories were formed: Pnc+ 6B+, Pnc+ 11+, Pnc+ 

14+, Pnc+ 19F+, Pnc+ 23F+ (Pnc type 1 was not found in any of the FinOM 

Cohort Study samples).  

The category of the child could change from one time point to another from Pnc- to 

either one of the Pnc+ categories or from Pnc+ ST- category to the Pnc+ ST+ category 

according to the Pnc culture findings, but never vice versa.  

 

Study III: The IgA subclass distribution of natural anti-PsaA and anti-PS14 antibodies 

was analyzed in 39 saliva samples found to contain anti-PsaA (38/39) and/or anti-PS14 

(32/39) IgA antibodies in previous measurements (I, II).  

 

Study IV: The association between the presence of salivary antibodies against PspA and 

PsaA, and the risk of subsequent Pnc carriage and AOM was evaluated in all children 

with saliva samples obtained at 6, 12 and 18 months of age. 

 

1.4. Clinical samples 

Clinical samples were collected as described in detail previously (Rapola et al. 2000; 

Kilpi et al. 2001; Soininen et al. 2001; Syrjänen et al. 2001). The NP swabs were 
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obtained by the study nurses through a nostril by using a sterile swab with a flexible 

aluminum wire shaft and a dry calcium alginate tip (Galgiswab; Spectrum Laboratories, 

Dallas, TX). The NPAs were obtained with a sterile pediatric mucus extractor (UNO 

sterile EtO; UnoPlast A/S, Hundested, Denmark) by guiding the catheter through the 

nostril to the nasopharynx and applying a gentle suction with an electric suction device. 

The study doctor performed myringotomy to all children with AOM to confirm the 

diagnosis. Prior to myringotomy, the external ear canal was cleaned and the tympanic 

membrane was anesthetized with 70% liquid phenol. A myringotomy knife was inserted 

through the tympanic membrane, and MEF was aspirated with an electronic suction 

apparatus into a sterile collector. From there the fluid was rinsed into a polypropylene 

microtube containing 0.5 to 1ml of phosphate-buffered saline (PBS). For the antibody 

measurements, unstimulated saliva samples and venous blood samples (5ml) were 

collected. The saliva samples were collected by placing a plastic pipette in the cheek 

area and applying a gentle suction. The saliva samples were immediately frozen and 

stored at -70°C for further analysis. Samples were thawed only once (exception: study 

III) and centrifuged at 15 000 rpm for 10 minutes prior to assays. The supernatants were 

used for the measurement of antibodies.  

 

 

2. Bacteriological methods 
The NP, NPA and MEF samples were collected for the detection of Pnc carriage and the 

diagnosis of the etiology of AOM. They were immediately plated on enriched chocolate 

agar and selective sheep blood agar (containing 5µg gentamicin) plates, which were 

incubated overnight at the study clinic at +36°C with 5% CO2. On the next day, the 

plates were transported to the Laboratory of Bacterial Respiratory Infections at KTL, in 

Oulu, where they were further incubated for 24 hours. Identification of pneumococcus 

was carried out by using standard methods (Kilpi et al. 2001). Serotyping of Pnc isolates 

was performed by counterimmunoelectrophoresis (CIEP) or, for neutral serogroup 7 or 

serotype 14, by latex agglutination. The uncertain results were confirmed with the 

capsular swelling test (Quellung test). All antiserum pools and group- or type-specific 

antisera for serotyping, as well as factor antisera for subtyping within groups 6, 9, 18, 

19 and 23, were purchased from Statens Seruminstitut (Copenhagen, Denmark). 
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3. Serological methods 

 
3.1. Protein antigens (I) 

Certain practicalities dictated in the beginning of this study which Pnc protein antigens 

were selected for the measurement of salivary antibodies. On the grounds of 

information at that moment, PsaA, Ply and PspA were considered as the most important 

Pnc protein vaccine candidates. Natural antibodies to these three proteins had never 

been analyzed in saliva samples earlier. Furthermore, these antigens were readily 

available for the purposes of this study. 

 

3.1.1. Pneumococcal surface adhesin A (PsaA) 

The recombinant PsaA antigen prepared with the QiaexpressTM-system (Qiagen, Inc. 

Chatsworth, CA) was kindly provided by Drs Jacquelyn Sampson and Edwin Ades, 

CDC, Atlanta, Georgia. The expression host Escherichia coli SG 13009 (pREP4) was 

transformed with pAB247, which is the recombinant plasmid carrying psaA gene from 

the strain D39 of serotype 2 cloned into pQE30. The His-tagged recombinant PsaA was 

purified by Ni-NTA chromatography as described previously (Pilling et al. 1998).  

 

3.1.2. Pneumolysin (Ply) 

The recombinant Ply antigen was a kind gift from Prof. James C. Paton, Department of 

Molecular Biosciences, Adelaide University, Adelaide, Australia. The Ply antigen was a 

derivative of Ply with a Trp433-Phe mutation, which reduces the hemolytic activity 

without affecting antigenicity. This pneumolysoid antigen was purified from the 

recombinant E. coli as described previously (Paton et al. 1991). 

 

3.1.3. Pneumococcal surface protein A (PspA) 

The recombinant PspA product representing the 315-amino-acid amino-terminal half of 

the Rx1 PspA was used. It had been produced in E. coli by Aventis-Pasteur (Swiftwater, 

PA). PspA is variable in structure, but different PspAs share cross-protective epitopes. 

By the time of the antibody measurements of this study, the 315-amino-acid fragment of 

Rx1 was believed to contain the sufficient epitopes for cross-reactivity of antibodies 

produced against different PspAs (Briles et al. 1996a; Tart et al. 1996), as well as the 

protection-eliciting epitopes (McDaniel et al. 1994). 
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3.2. Polysaccharide antigens (II) 

Pnc serotypes 6B, 11A, 14, 19F and 23F were found frequently in both carriage and 

AOM in the study cohort. Therefore, the capsular PSs of these Pnc types were selected 

for the measurement of natural salivary antibodies. The Pnc type 1 was not detected in 

any of the bacterial cultures during the study. Capsular PS of this Pnc type was included 

as a control PS antigen in the antibody measurements.  

 

Pnc capsular PSs of types 1, 11A, 14, 19F and 23F were obtained from the American 

Type Culture Collection (ATCC; Manassas, VA). Capsular PS of serotype 6B was 

received via collaboration with The National Institute of Public Health and the 

Environment (Bilthoven, The Netherlands). The CPS antigen used for absorbing anti-

CPS antibodies from the saliva samples was obtained from Statens Seruminstitut 

(Copenhagen, Denmark). 

 

3.3. Enzymeimmunoassays (EIA) 

3.3.1. IgA specific assay (I, II) 

The salivary IgA antibodies against PsaA, Ply and PspA, and the Pnc PSs of types 1, 

6B, 11A, 14, 19F and 23F were measured by EIA. The microtiter plates (Costar 3591, 

Cambridge, MD) were coated with Pnc proteins in concentrations of 5µg of PsaA and 

Ply, and 150ng of PspA in 1ml of PBS by incubating the PsaA and PspA plates 

overnight at +4°C, and the Ply plate overnight at +37°C. For the Pnc PSs, the coating 

concentrations of 5-10µg in 1ml of PBS were used and the plates were incubated 

overnight at +22°C. The plates coated with PBS only were used as blank plates for each 

sample for subtraction of the non-specific binding. The PBS-blank plates were treated in 

the same way as the antigen plates during the assay. The plates were washed between 

each step four times with PBS containing 0.05% Tween 20 (Tween-PBS) by 

SkanWasher 300 (Skatron Instruments, Norway), except before the substrate, when they 

were washed three times with Tween-PBS and twice with distilled water. The plates 

were blocked with 10% fetal bovine serum (FBS; Gibco, BRL, Karlsruhe, Germany) in 

PBS (FBS-PBS) by incubating for 1 hour at +37°C. FBS-PBS was further used as a 

dilution buffer for the saliva samples, the monoclonal and the polyclonal antibodies. 

The saliva samples were diluted 1:10 and analyzed in triplicate. The saliva samples 

were thawed only once and thus none of the assays could be repeated (exception: study 
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III). The diluted samples and reagents were pipetted 50µl per well. Monoclonal 

antibodies to human Igs were used to determine specific IgA (M26012; Bionostics, 

Bedford, MA and Skybio, Bedfordshire, UK). The incubations of samples and 

monoclonal anti-human IgA antibodies were performed on a horizontal rotator 

(200rpm) for 2 hours at room temperature (RT). The polyclonal alkaline phosphatase-

conjugated rabbit anti-mouse IgG antibodies (H&L 315-055-045, Jackson 

Immunoresearch Laboratories, West Grove, PA) were incubated without rotation 

overnight at +22°C. The substrate solution containing 1mg of p-nitrofenyl phosphate 

disodium (Sigma104; Sigma Immuno Chemicals, St. Louis, MO) in 1ml carbonate 

buffer, pH 9.8, was pipetted 50µl per well and the plates were incubated for 1 hour at 

+37°C. The optical densities (OD) were measured on the 405nm wavelength with an 

EIA-reader (Titertek; Labsystems, Helsinki, Finland). The OD value of each well on the 

PBS-blank plate was subtracted from that on the plate coated with the antigen. 

  

An OD value of 0.05 for anti-PsaA, 0.04 for anti-Ply and 0.03 for anti-PspA was set up 

as a cut off limit for positivity. These cut off limits were calculated from the OD 

readings given by the blank wells on the plates coated with the antigen (>2 x SD of 

daily assays). The results were expressed as units of IgA per ml of saliva (U/ml) 

calculated by comparing the mean OD readings of sample triplicates to a reference 

curve drawn on the basis of OD values given by the serial dilution of the in house 

reference serum (pool of adult serum). The reference serum was assigned to contain 100 

U/ml of IgA anti-PsaA, anti-Ply and anti-PspA antibodies. The cut off OD values 

corresponded to the concentrations of 0.20 U/ml for anti-PsaA and 0.16 U/ml for anti-

Ply and -PspA. If the concentration of the sample was less, the concentration was 

assigned as one half of the cut off concentration.  
 

An OD value of 0.03 for anti-1, anti-11A, anti-19F and anti-23F, and 0.04 for anti-6B 

and anti-14 was set up as a cut off limit for positivity (the cut off limit calculated as 

described above). The results were expressed as ng of IgA to Pnc PS in 1 ml of saliva 

(ng/ml) calculated on the basis of the officially assigned IgA concentrations in the 89-

SF reference serum (Quataert et al. 1995, 1998). The cut off OD readings corresponded 

to the concentrations of 1.7 ng/ml for anti-1, 1.2 ng/ml for anti-6B, 1.2 ng/ml for anti-

11A, 1.7 ng/ml for anti-14, 1.5 ng/ml for anti-19F and 1.0 ng/ml for anti-23F antibodies. 
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If the concentration was less, the concentration was assigned as one half of the cut off 

concentration.  

 

The day-to-day variation of the assay was followed by including into every daily assay 

an adult saliva sample containing antibodies to all used antigens. The coefficient of 

variations (CV) for anti-PsaA, anti-Ply and anti-PspA were 22, 27 and 19, respectively. 

The CVs for the anti-1, anti-6B, anti-11A, anti-14, anti-19F and anti-23F were 30, 26, 

22, 24, 27 and 26, respectively.  

 

3.3.2. sIg specific assay (I, II) 

The sIg antibodies against PsaA, PspA, Ply, and Pnc PSs of types 6B, 14 and 19F were 

analyzed by determining the presence of SC in the anti-PsaA, -Ply, -PspA, -6B, -14 and 

-19F in a subpopulation of 168 children by EIA as described above. Monoclonal 

antibody to human SC (I-6635, Sigma) was used. The use of this monoclonal antibody 

was expected to reflect concentration of the predominant secretory Ig isotype, sIgA, in 

the saliva samples. The concentrations of possible salivary sIgM antibodies were 

presumed to be marginal. An OD value of 0.03 was set up as a cut off limit for 

positivity for all antibody specificities. Results were expressed as OD values. If the OD 

value of the sample was less than the cut off limit, it was assigned as one half of the cut 

off limit. The day-to-day variation of the sIg specific assay was followed with an adult 

saliva sample.  The CVs for anti-PsaA, -Ply and -PspA were 19, 28 and 19, respectively. 

The CVs for the anti-6B, anti-14 and anti-19F were 26, 24, and 27, respectively.   

 

3.3.3. IgG specific assay (I, II) 

The IgG antibodies against PsaA, Ply and PspA, and Pnc PSs of types 1, 6B, 11A, 14, 

19F and 23F were measured by EIA as described earlier (Käyhty et al. 1995) with one 

exception: the alkaline phosphatase-conjugated anti-human IgG (A3188, Sigma 

Immuno Chemicals, St Louis) was used. An OD value of 0.03 for anti-PsaA, -Ply and -

PspA was set up as a cut off limit for positivity. An OD value of 0.02 for anti-1 and 

anti-6B, 0.03 for anti-11A, anti-14 and anti-23F, and 0.01 for anti-19F antibodies was 

set up as the cut off limit. Serum IgG anti-Pnc PS antibodies had been determined at the 

same ages (Soininen et al. 2001).  
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3.3.4. IgA and IgA subclass specific assay (III) 

The IgA, IgA1 and IgA2 antibodies against PsaA and Pnc PS14 were measured by EIA 

as described above. The monoclonal antibodies to human IgA (M26012; Skybio), IgA1 

and IgA2 (A89-036 and A89-038, Nordic Immunological Laboratories, Tilburg, The 

Netherlands) were used. An OD ≥0.04 for all measurements was considered to be 

positive. Samples with undetectable anti-PsaA or anti-PS14 IgA1 or IgA2 were 

assigned a value equivalent to half of the detection limit. The results are given as OD-

units (OD x 1000), which were calculated from the mean OD readings of triplicate 

samples after subtracting the OD readings of the PBS blank plates.  

 

 

4.   Statistical methods 
Studies I and II: The concentrations of IgA and sIg antibodies were reported as 

geometric mean concentrations (GMC) and geometric mean (GM) OD readings, 

respectively. Log-transformed data was used in the analyses of antibody concentrations. 

Statistical comparisons of antibody concentrations were performed using Student’s t test 

and one-way analysis of variance (ANOVA), followed by a post hoc test (Tukey 

honestly significant difference test) when appropriate (I, II). Yates’s corrected chi 

square-test or Fisher’s two-tailed exact test were used when proportions of variables 

were compared (I, II). Pearson’s correlation was used to evaluate the correlation 

between the antibody concentrations of different specificities (I), and the IgA- and sIg-

specific assays (I, II). P values of less than 0.05 were considered to be statistically 

significant. 

 

Study III: The results were reported as OD-units. Pearson’s correlation was used to 

evaluate the correlation between the OD-unit values of previous and present IgA 

measurements, and the correlation between IgA and the sum of IgA1 and IgA2 

concentrations. Wilcoxon signed rank test was used to compare the GMCs of IgA1 and 

IgA2 antibodies to PsaA and PS14 and the GMs of the anti-PsaA and anti-PS14 

IgA1/IgA2 ratios. P values of less than 0.05 were considered to be statistically 

significant. 
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Study IV: The results were examined by using dichotomous antibody variables: the anti-

PspA and -PsaA concentrations going under the detection limit were denoted 0, and the 

concentrations exceeding the detection limit were denoted 1. Logistic regression models 

were used to evaluate the presence of salivary anti-PspA and anti-PsaA antibodies as the 

risk factors for asymptomatic Pnc carriage. Cross-tabulation was used in the preliminary 

analysis of association between the presence of salivary anti-PspA and -PsaA and Pnc 

AOM. Yates’s corrected chi square test or Fisher’s two-tailed exact test were used to 

compare the proportions of the individuals with Pnc AOM. An extended version of the 

Cox proportional hazard model was used to estimate the risk of Pnc AOM in the age 

intervals from 6 to 12 months, from 12 to 18 months, and from 18 to 24 months in 

relation to the presence of anti-PspA and -PsaA IgA antibodies in saliva at the 

beginning of each age interval (that is: at 6, 12 and 18 months of age). This gave the 

average effect of the covariate on Pnc AOM episodes. In univariate analysis, the 

presence of salivary anti-PspA and anti-PsaA antibodies was used as a covariate 

modifying the individual risk of Pnc AOM. In multivariate analysis, besides the 

presence of salivary antibodies, the information on previous Pnc exposure before the 

indicated time period, i.e. any Pnc contact, Pnc carriage without Pnc AOM, and Pnc 

AOM, were used as covariates modifying the individual risk of Pnc AOM. P values of 

less than 0.05 were considered to be statistically significant. 

 

 

5. Approval of Ethics Committees 
The FinOM Cohort Study protocol and consent form were evaluated and approved prior 

to the start of the trial by the Ethics Committees of the National Public Health Institute 

(KTL), Tampere University Hospital, and the Department of Social and Health Care of 

Tampere City. Written informed consent was obtained at the time of enrollment from 

the parents of all children participating in the FinOM Cohort Study. 
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RESULTS 
 

1. Natural development of salivary antibodies to pneumococcal protein 

and polysaccharide antigens in relation to age and pneumococcal 

contacts (I, II) 

 
1.1. Development of salivary antibodies by age  

1.1.1. PsaA, Ply and PspA 

Antibody concentrations to the three Pnc protein vaccine candidates PsaA, Ply and 

PspA were analyzed in saliva samples collected during scheduled healthy visits at the 

ages of 6, 12, 18 and 24 months (I). Natural IgA antibodies to Pnc protein antigens were 

detected already in the saliva of infants at six months of age and the antibody 

production increased with age. This was indicated by the increase in the proportion of 

antibody positive samples and in the GMCs of anti-PsaA, -Ply and -PspA IgA. The 

kinetics of antibody production to distinct protein antigens was slightly different. At six 

months of age anti-PsaA and -Ply IgA was found in the saliva of 57% and 85% of the 

children, respectively, whereas anti-PspA IgA was found in the saliva of only 9% of the 

children (Table 1). By the age of 24 months, 74% of the children had IgA antibodies to 

PsaA and 93% to Ply, but still only 23% to PspA. In adults, salivary anti-PsaA and anti-

Ply IgA were detected in all individuals and anti-PspA in 88%. 

 

Further, an age-dependent increase was seen in the GMCs of the salivary anti-PsaA, -

Ply and -PspA IgA (Table 1). Like the GMCs, the medians of the salivary anti-PsaA and 

-Ply IgA concentrations increased by age. Overall, the antibody concentrations 

remained lower than in adults (Table 1; I: Figure 1). The variation in the antibody 

concentration between individuals was broad both in children and adults. The majority 

of the anti-PspA values in the children were below the detection limit.  

 

The anti-PsaA, -Ply and -PspA IgG antibody concentrations were measured in saliva 

samples of 104 children and 16 adults. IgG to only Ply, but not to PsaA or PspA, was 

detected in the saliva of children and adults. In children, the proportion of saliva 

samples positive for anti-Ply IgG decreased steadily by age: at the age of 6 months 

approximately 90% of children had measurable IgG anti-Ply in their saliva, while at 24 
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months of age the proportion of positive samples was approximately 60% (data not 

shown). Less than one half of the adults (7/16) had anti-Ply IgG in their saliva. The 

correlation between salivary and serum anti-Ply IgG antibodies was evaluated from 

saliva and serum samples of the children. No correlation was detected between salivary 

and serum anti-Ply IgG (data not shown). In approximately one third of the cases, the 

serum sample didn’t contain a measurable concentration of anti-Ply IgG, while anti-Ply 

IgG was detected in the saliva sample collected at the same age. 

 

1.1.2. Pneumococcal polysaccharides of types 1, 6B, 11A, 14, 19F and 23F 

Antibody concentrations to the five most common Pnc serotypes/groups (6B, 11A, 14, 

19F and 23F) cultured from the clinical samples (NP, NPA and/or MEF samples) in the 

study population were analyzed in saliva samples collected during scheduled healthy 

visits at the ages of 6, 12, 18 and 24 months (II). In addition, a serotype that was not 

detected in any of the clinical samples was included in the antibody measurements (type 

1). 

 

As with Pnc protein antigens, natural IgA antibodies to Pnc capsular PSs were detected 

already at six months of age and the antibody production increased by age. The kinetics 

of anti-6B production was different from the other serotypes: at six months of age anti-

6B IgA antibodies were already found in the saliva of 62% of the children, whereas 

anti-1, anti-14 and anti-19F IgA were each found in approximately 20%, and anti-11A 

and anti-23F IgA in approximately 10% of the samples (Table 1). The proportion of 

positive samples increased by age for all serotypes: at the age of 24 months positive 

findings ranged from 45 to 78% of the samples. Among the adult samples, ten out of 17 

(59%) were positive for anti-1 and the majority for anti-6B or anti-14 IgA (both 94%). 

Correspondingly, the GMCs of anti-Pnc-PS IgA increased with age throughout the 

follow-up (Table 1). The only exception was anti-6B, which was found often already at 

6 months of age and whose concentration increased modestly only between the ages of 

6 and 12 months.  

 

The saliva samples of 51 children and 17 adults were analyzed for anti-1, anti-6B and 

anti-14 IgG. The saliva samples of another 59 children were analyzed for anti-11A, anti-

19F and anti-23F IgG. None of the studied samples of children contained anti-1, anti-6B 

or anti-19F IgG antibodies. Salivary IgG antibodies to the serotypes 11A, 14 and 23F 
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were found in 2-8% of the samples in children. The IgG concentrations in the respective 

serum samples were examined, but no relation between the concentrations of salivary 

and serum IgG was detected. None of the 17 saliva samples from adults contained 

detectable anti-1 or anti-6B IgG, but 2 samples had anti-14 IgG.  

 

1.1.3. Maturation of mucosal immunity 

Several studies have reported that the sIgA system would have a rapid maturation 

pattern. In the present study, the GMCs of anti-PsaA, -Ply, -PspA, -1, -6B, and -14 did 

not reach the antibody concentrations detected in adults by the age of 24 months despite 

the increase in antibody concentrations by age (Table 1).  

  

 
Table 1. The proportions of samples with detectable salivary anti-PsaA, -PspA, -Ply, -1, -6B, -11A, -14, -

19F and -23F IgA antibodies (% positive) and the geometric mean anti-PsaA, -PspA, -Ply, -1, -6B, -11A, 

-14, -19F and -23F IgA concentrations (GMC; ng/ml) with age in all children and adults.  

 
  6mo 12mo 18mo 24mo Adults 

Antigen N % 

positive

GMC, 

ng/ml 

% 

positive

GMC, 

ng/ml 

% 

positive 

GMC, 

ng/ml 

% 

positive

GMC, 

ng/ml 

% 

positive

GMC, 

ng/ml 

PsaA 260-300 57 0.33 57 0.40 70 0.63 74 0.62 100 1.96 

Ply 260-300 85 0.77 89 0.91 92 1.71 93 2.01 100 6.11 

PspA 235-272 9 0.10 14 0.11 22 0.13 23 0.13 88 0.79 

            

1 74-87 20 1.19 43 1.69 45 2.05 59 2.14 59 2.89 

6B 200-241 62 2.24 70 2.71 71 2.60 73 2.60 94 3.72 

11A 86-99 10 0.72 52 1.38 70 2.75 67 2.80   

14 189-225 21 1.31 28 1.49 34 1.96 45 2.46 94 17.40 

19F 205-246 20 1.04 58 2.32 72 4.11 78 4.88   

23F 80-93 8 0.62 40 0.92 56 1.56 60 1.73   

 

 

1.2. Development of salivary antibodies in relation to pneumococcal contacts 

To evaluate the relationship between Pnc contacts and salivary IgA production, the 

children were grouped at each time point into two or three categories according to their 

Pnc culture findings before the indicated age. When analyzing the salivary antibodies to 

Pnc protein and PS antigens two (Pnc- and Pnc+ children) and three categories (Pnc-, 

Pnc+ ST- and Pnc+ ST+ children) were used, respectively. 
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1.2.1. PsaA, Ply and PspA 

The increase of antibody production by age was associated with the previous Pnc 

contacts of the children. The respective proportions of the anti-PsaA, -Ply and -PspA 

IgA positive samples were at all ages higher in the Pnc+ than in the Pnc- children (I: 

Table 1). The proportion of the anti-PsaA positive samples in the Pnc+ children was at 

all ages approximately 1.5–2 times greater than in the Pnc- children (P<0.001 for all 

comparisons). The proportion of the anti-Ply positive samples was at 12 and 18 months 

higher in the Pnc+ children when compared to Pnc- children (P<0.01 at 18 months of 

age) (I: Table 1). The proportion of the anti-PspA positive samples increased steadily 

with age in the Pnc+ children, but remained the same or decreased in the Pnc- children. 

At six months of age the proportion of the anti-PspA positive samples was two times 

greater in the Pnc+ than in the Pnc- children (P<0.05) and at 24 months of age the 

difference between these categories was already eight-fold (P<0.001). 

 

The respective GMCs of anti-PsaA, -Ply and -PspA IgA antibodies were at all ages 

significantly higher in the Pnc+ than in the Pnc- children (I: Table1). The GMCs of anti-

PsaA were at all ages three to four times higher in the Pnc+ than in the Pnc- children 

(P<0.001 for all comparisons). Among the Pnc- children the GMCs remained close to 

the detection limit. The GMC of anti-Ply increased both in the Pnc+ and Pnc- children, 

but in the former category the increase was more pronounced. The GMC of anti-Ply was 

significantly higher in the Pnc+ than in the Pnc- children at all ages (P<0.05–0.001). 

The GMC of anti-PspA increased slightly with age in the Pnc+ children and remained 

constant or decreased in the Pnc- children, the difference between the two categories 

being significant at all ages (P<0.05–0 .001). 

 

The association between the detected Pnc+ culture findings and salivary anti-PsaA, -Ply 

and -PspA concentrations in selected individuals has been illustrated in Figure 3 of 

study I. In the Pnc- children (Panel A), the antibody concentrations mainly remained 

unchanged or decreased during the follow-up. In the Pnc+ children (Panel B), a culture 

finding positive for pneumococcus was associated with a salivary antibody response in 

many, but not in all cases. The kinetics of the anti-PspA production differed from the 

production of anti-PsaA and -Ply antibodies, which seemed to occur often 

simultaneously and with similar intensity. 
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1.2.2. Pneumococcal polysaccharides of types 1, 6B, 11A, 14, 19F and 23F 

Children with a previous positive culture(s) for the indicated serotype (Pnc+ ST+; note 

that for type 1 there was no Pnc+ ST+ children) had a larger proportion of saliva 

samples positive for antibodies than the children without known previous Pnc contacts 

(Pnc-) or the children with positive cultures for other Pnc types than the one being 

analyzed (Pnc+ ST-). By the age of 24 months saliva samples positive for anti-6B, anti-

11A, anti-14, anti-19F and anti-23F IgA antibodies were found for 88%, 93% 100%, 

89% and 74% of the Pnc+ ST+ children, respectively. The corresponding proportions 

for anti-6B, anti-11A, anti-14, anti-19F and anti-23F IgA among the Pnc+ ST- children 

were 69%, 64%, 37%, 75% and 51% (respectively) and among the Pnc- children 58%, 

63%, 30%, 62% and 67% (respectively). The proportions of anti-6B, anti-14 and anti-

19F IgA were significantly higher in the Pnc+ ST+ than in the Pnc- and Pnc+ ST- 

children (P<0.05). The proportions of anti-1 IgA antibodies in the Pnc+ ST- and Pnc- 

children were equal: 57% and 56%, respectively. 

 

The mean antibody concentrations in the Pnc-, Pnc+ ST- and Pnc+ ST+ children have 

been plotted in Figure 1 of study II. For all serotypes examined, the GMC in the Pnc+ 

ST+ category was at most, if not all, ages significantly higher than in the Pnc- category 

(II: Figure 1). The difference was most notable for serotypes 11A and 14 (at all ages), 

and weakest for serotype 23F. In addition, for some serotypes (6B, 11A, 19F) the 

antibody concentrations were modestly higher in the Pnc+ ST- category than in the Pnc- 

category.  

 

The effect of contacts with the cross-reacting types of serogroup 6 and 19 on salivary 

anti-6B and -19F concentrations was also evaluated. The contacts with the cross-

reacting types 6A and 19A did have an effect on the anti-6B and anti-19F 

concentrations, respectively: a clear tendency of higher concentrations in Pnc+ 6A+ 6B- 

children was seen when compared to Pnc- and Pnc+ 6A- 6B- children, and in Pnc+ 

19A+ 19F- children when compared to Pnc- and Pnc+ 19A- 19F- children (II: Figure 2). 
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2.  The origin of salivary IgA (I, II) 
To ascertain that the salivary antibodies to the Pnc protein and PS antigens were locally 

produced, the correlations between the IgA and the presence of SC in the anti-PsaA, -

Ply, -PspA, -6B, -14 and -19F were determined at 6, 12, 18 and 24 months of age in a 

subpopulation of 168 children. The correlations were highly significant at all ages 

(P<0.01 for all comparisons) indicating that the origin of IgA was secretory. The 

correlations between salivary anti-PsaA, -Ply and -PspA IgA and SC, and between 

salivary anti-6B, -14 and -19F IgA and SC have been illustrated in figure 2 of study I 

and in figure 4 of study II, respectively.  

 

 

3. The salivary IgA1 and IgA2 antibodies in relation to the antigen’s 

nature (III) 
To evaluate the potential effect of the antigen’s nature on the IgA subclass distribution 

(III), IgA1 and IgA2 antibodies were analyzed in saliva samples found to contain anti-

PsaA and/or -PS14 IgA in the previous IgA measurements (I, II). Anti-PsaA and anti-

PS14 IgA antibodies were re-measured in the present study, and the results correlated 

well with the previous measurements (r=0.87 and r=0.84, respectively). Saliva samples 

found to contain anti-PsaA and/or anti-PS14 were available from 39 children. Anti-

PsaA IgA was detected in 38 saliva samples, of which 3, 7, 11 and 17 samples were 

collected at 6, 12, 18 and 24 months of age, respectively. Anti-PS14 IgA was detected 

in 32 saliva samples, of which 4, 7, 8 and 13 samples were collected at 6, 12, 18 and 24 

months of age, respectively.  

 

Since the anti-PsaA and anti-PS14 IgA1/IgA2 ratios were not dependent on age, the 

results at different ages were combined. For both antigens, IgA1 was the predominant 

subclass. Anti-PsaA IgA1 was found in 97% and anti-PS14 IgA1 in 88% of the 

samples, whereas IgA2 to PsaA and PS14 was found in 47% and 56% of the samples, 

respectively (III: Table 1). Salivary IgA1 and IgA2 antibodies to both PsaA and PS14 

were found in 26 samples.  

 
The IgA1 and IgA2 concentrations were given semiquantitatively as arbitrary OD-units 

based on OD-values. To see if it was appropriate to compare the OD-units of IgA1 and 
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IgA2 and calculate their ratios, the sum of the OD-units of anti-PsaA and -PS14 IgA1 

and IgA2 of each sample was correlated with the corresponding value of specific IgA 

(III: Figure 1). Irrespective of the proportions of the subclasses in the individual 

samples, there was a significant linear correlation between the sum of OD-units of 

specific IgA1 and IgA2 and anti-PsaA and -PS14 total IgA (r = 0.98 and r = 0.97, 

respectively). This allowed us to compare the IgA1 and IgA2 concentrations. 

 
The salivary anti-PS14 IgA2 concentrations seemed to be relatively higher than those 

for anti-PsaA IgA2. This was seen both in higher median anti-PS14 IgA2 (50 OD-units) 

when compared to median anti-PsaA IgA2 (20 OD-units) (III: Figure 2), and in the 

significantly lower anti-PS14 IgA1/IgA2 ratios when compared to anti-PsaA (III: Figure 

3, P=0.001). The proportionally higher anti-PS14 IgA2 concentrations were also seen in 

26 individual saliva samples, which were found to contain simultaneously anti-PsaA 

and anti-PS14 IgA1 and IgA2 antibodies (III: Figure 4). In 20 (77%) of the 26 saliva 

samples the IgA1/IgA2 ratio was lower for anti-PS14 than for anti-PsaA, which 

indicated proportionally more anti-PS14 IgA2 than anti-PsaA IgA2. 

 

 

4. Association between the salivary antibodies to PspA, PsaA and Ply, 

and the risk of pneumococcal carriage and AOM (IV) 
Anti-PspA IgA was detected quite rarely in the saliva samples of the FinOM Cohort 

Study, while anti-PsaA and -Ply antibodies were found more frequently (I). From the 

samples collected at 6, 12 and 18 months of age only 9, 14 and 22% were positive for 

salivary anti-PspA, while 57, 57 and 70% were positive for salivary anti-PsaA, and 85, 

89 and 92% were positive for salivary anti-Ply, respectively. 

 

4.1.  Prediction of asymptomatic pneumococcal carriage 

Logistic regression models were used to evaluate the presence of salivary anti-PspA, -

PsaA and -Ply at 6, 12 and 18 months of age as a predictor of asymptomatic Pnc 

carriage six months later. No sign of protection against Pnc carriage was found. In 

contrast, the presence of detectable salivary anti-PspA seemed to increase the odds of 

becoming an asymptomatic Pnc carrier, the result being statistically significant at 18 

months of age (OR, odds ratio, 1.44 [95% CI 0.43-4.81], 1.43 [0.63-3.25] and 2.18 
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[1.08-4.38] at 6, 12 and 18 months, respectively). A similar risk-increasing effect was 

found with salivary anti-PsaA antibodies as well, the result being statistically significant 

at 6 and 18 months of age (OR 2.09 [1.13-3.88], 1.59 [0.92-2.75] and 2.03 [1.11-3.74] 

at 6, 12 and 18 months, respectively). The detectable salivary anti-Ply antibodies 

seemed to have no effect on the risk of subsequent Pnc carriage (OR 1.06 [0.46-2.46], 

0.76 [0.33-1.75] and 1.29 [0.46-3.61] at 6, 12 and 18 months, respectively). 
 

4.2. Prediction of pneumococcal AOM 

4.2.1. Preliminary analysis 

To characterize the association between salivary anti-PspA, -PsaA and -Ply and 

subsequent Pnc AOM, the presence or absence of these antibodies at 6, 12 and 18 

months of age was cross-tabulated with the occurrence of Pnc AOM during the 

following six months. Children having anti-PsaA in their saliva at 6 months of age 

tended to have more often Pnc AOM during the following six months than those 

without salivary anti-PsaA (P=0.01) (IV: Table 1). At this age, similar tendencies were 

also seen for anti-PspA (IV: Table 1) and anti-Ply (Table 2), but the results were not 

statistically significant. 

  

After 12 months of age, however, the association between detectable anti-PspA and the 

occurrence of subsequent Pnc AOM appeared to differ from that of anti-PsaA and anti-

Ply. At 12 and 18 months of age, the Pnc AOM episodes during the following six 

months were as frequent in children with and without detectable salivary anti-PsaA (IV: 

Table 1), and more frequent in children with detectable salivary anti-Ply than in those 

without salivary anti-Ply, though the result was not statistically significant (Table 2). By 

contrast, children having anti-PspA in their saliva at 12 or 18 months of age seemed to 

have a lower frequency of Pnc AOM during the following six months (IV: Table 1).  
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Table 2. Presence of salivary anti-Ply IgA antibodies in children at 6, 12 and 18 months (mo) of age in 

relation to pneumococcal AOM during the following six months. The proportions of the individuals with 

Pnc AOM were compared with Yates’s corrected chi square test or Fisher’s exact test. 

 

  Anti-Ply 

   Pnc AOM next 6 mo  

Age (mo) of sample Antibody N No Yes % with Pnc AOM 

      

6  Not detected 41 38 3 7 

 Detected 250 214 36 14 

      

12  Not detected 31 29 2 7 

 Detected 246 198 48 20 

      

18  Not detected 18 17 1 6 

 Detected 238 211 27 11 
 

 

 

4.2.2. Univariate analysis using the Cox proportional hazard model 

To confirm the associations suggested by the preliminary analysis, an extended version 

of the Cox proportional hazard model was applied using the presence of salivary anti-

PspA, -PsaA and -Ply as explanatory variables. The relative risk (RR) of Pnc AOM was 

analyzed over three time intervals, from 6 to 12, from 12 to 18 and from 18 to 24 

months of age (IV: Table 2; Table 3). In this model, the presence of salivary anti-PsaA 

antibodies at six months of age was associated with an increased risk of Pnc AOM 

during the following six months (RR 3.13 [95% CI 1.50-6.55]) (IV: Table 2). Similar, 

though not statistically significant, tendencies were also seen with salivary anti-PspA 

(RR 2.06 [0.63-6.75]) (IV: Table 2) and anti-Ply (RR 2.44 [0.77-7.69]) (Table 3) at this 

age. 

 

At 12 and 18 months of age, detection of salivary anti-PsaA did not appear to have any 

clear-cut effect on the risk of subsequent Pnc AOM (IV: Table 2). The presence of 

detectable anti-Ply antibodies at the same ages seemed to be associated with an 

increased risk  of subsequent Pnc AOM (not statistically significant) (Table 3). By 

contrast, the presence of salivary anti-PspA at 12 and 18 months of age seemed to 

decrease the risk of subsequent Pnc AOM, the point estimates for RR being as low as 
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0.29 [0.07-1.16] and 0.16 [0.02-1.13], respectively (IV: Table 2). However, the results 

did not reach statistical significance.  

 

 
Table 3. Relative risks (RR) of pneumococcal AOM with 95% confidence intervals (CI) in the uni- and 

multivariate Cox proportional hazard models determined by the presence of salivary anti-Ply IgA and 

pneumococcal history in 6-month (mo) intervals. 

 

 Risk of Pnc AOM in the following 6 mo 

 Anti-Ply Any Pnc contact Pnc carriage Pnc AOM 

Age (mo) of sample RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) 

6 mo 2.44 (0.77, 7.69)    

 2.25 (0.69, 7.38) 3.88 (2.08, 7.23)   

 2.40 (0.76, 7.60)  1.51 (0.75, 3.02)  

 2.31 (0.70, 7.63)   6.73 (3.39, 13.37) 

12 mo 3.67 (0.93, 14.49)    

 4.01 (0.99, 16.13) 0.67 (0.38, 1.18)   

 4.38 (1.11, 17.20)  0.32 (0.16, 0.64)  

 3.63 (0.93, 14.10)   1.86 (0.99, 3.51) 

18 mo 2.27 (0.32, 16.08)    

 2.03 (0.30, 13.90) 1.39 (0.55, 3.49)   

 2.88 (0.41, 20.30)  0.30 (0.13, 0.73)  

 2.00 (0.27, 14.97)   3.54 (1.71, 7.35) 

 

 

 

4.2.3. Multivariate analysis using the Cox proportional hazard model   

To find out, whether early exposure to pneumococci could be the underlying factor 

increasing the risk of Pnc AOM, explanatory variables indicating previous Pnc exposure 

were included in the subsequent multivariate analyses. Thus, the information on any 

previous Pnc contact, previous Pnc carriage without Pnc AOM, and previous Pnc AOM 

were used as covariates besides the presence of salivary antibodies. Inclusion of these 

factors in the model left, however, the relations between anti-PspA, -PsaA and -Ply and 

the risk of Pnc AOM essentially unchanged (IV: Table 2; Table 3). The results were 

comparable to those described earlier in connection with serum anti-PsaA antibodies 
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(Rapola et al. 2003) indicating that previous Pnc AOM increases the risk of subsequent 

Pnc AOM, while previous Pnc carriage without AOM decreases the risk of Pnc AOM 

after the age of 12 months.  

 

 

5. Association between the serum antibodies to PspA and Ply, and 

the risk of pneumococcal AOM  
The relation between the salivary anti-PspA, -PsaA and -Ply antibodies and the risk of 

subsequent risk of Pnc AOM was described above. In a previous study by Rapola et al. 

(2003), the relation between the serum anti-PsaA concentrations at 6, 12 and 18 months 

of age and the risk of subsequent Pnc AOM was evaluated. At that time, the results for 

serum anti-PspA and anti-Ply IgG were not published. To enable the comparison 

between the salivary and serum findings, the association between the serum anti-PspA 

and anti-Ply IgG and the risk of subsequent Pnc AOM is described below (unpublished 

data). 

 

5.1.  Prediction of pneumococcal AOM 

5.1.1. Univariate analysis using the Cox proportional hazard model 

An extended version of the Cox proportional hazard model was applied using the serum 

anti-PspA and -Ply IgG concentrations (log transformed) at 6, 12 and 18 months as 

explanatory variables. As in salivary models, the RR of Pnc AOM was analyzed over 

three time intervals, from 6 to 12, from 12 to 18, and from 18 to 24 months of age. The 

higher the serum anti-PspA or -Ply IgG concentration at six months of age, the higher 

was the risk of Pnc AOM during the following six months. More precisely, at six 

months of age, an increase of one log unit in serum anti-PspA concentration increased 

the risk of subsequent Pnc AOM by 93% (RR 1.93 [95% CI 1.45-2.56]). 

Correspondingly, an increase of one log unit in serum anti-Ply concentration increased 

the risk of subsequent Pnc AOM by 57% (RR 1.57 [95% CI 1.26-1.95]). From the age 

of 12 months onwards, higher serum anti-PspA or -Ply concentrations either had neutral 

or slightly decreasing effect on the risk of subsequent Pnc AOM: at 12 and 18 months 

of age the RRs for serum anti-PspA were 1.03 [95% CI 0.84-1.25] and 0.75 [95% CI 

0.52-1.09], respectively. The RR for serum anti-Ply at 12 months of age was 0.97 [95% 

CI 0.84-1.12] and at 18 months of age 0.86 [95% CI 0.71-1.05]. 
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5.1.2. Multivariate analysis using the Cox proportional hazard model   

Inclusion of the information on previous Pnc contacts (any Pnc contact, Pnc carriage 

without Pnc AOM, and Pnc AOM) in the model left the relations between serum anti-

PspA and -Ply, and the risk of subsequent Pnc AOM essentially unchanged (data not 

shown). 
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DISCUSSION 
 

1. Study design  
This thesis is a summary of four studies (I-IV), which were conducted to evaluate the 

natural development and role of mucosal immunity against pneumococcus in children in 

relation to age and Pnc contacts. In studies I and II, the salivary IgA antibodies to 

several Pnc protein and PS antigens were measured and the origin of these salivary 

antibodies was addressed. In study III, the distribution of IgA1 and IgA2 antibodies to 

one Pnc protein and one Pnc PS antigen was determined. In study IV, the relation of 

salivary anti-protein antibodies to subsequent Pnc carriage and AOM was evaluated. 

 

The FinOM Cohort Study was initially designed to examine the natural course and 

epidemiology of Pnc carriage, and the risk factors leading to Pnc carriage and 

subsequent Pnc AOM. Altogether 329 children were followed from 2 to 24 months of 

age from April 1994 to July 1997 at a special study clinic. The overall compliance in the 

study was high: 85% (281/329) of children initially enrolled in the study completed the 

follow-up (Syrjänen et al. 2001).  

 

The Pnc cultures in the FinOM Cohort Study were performed on a regular basis at one 

to six months’ intervals, with additional cultures during respiratory infections and AOM 

episodes. The time between the NP samples was one month at 2 to 6 months of age, 3 

months at 6 to 18 months of age, and 6 months at 18 to 24 months of age. During the 

first 6 months of age, the majority of Pnc carriage was most probably detected. 

Thereafter, however, some carriage may have gone undetected due to the longer 

sampling intervals. Furthermore, the bacterial culture methods, though standardized and 

performed in an expert laboratory, may have failed to detect small numbers of bacteria 

in the clinical samples. The PCR test for Pnc antigens has been shown to increase the 

numbers of positive samples compared to conventional bacterial culture methods 

(Virolainen et al. 1994). Thus, the study design makes it possible that some Pnc 

contacts may have been missed at some time points during the study, which could 

explain those inexplicable increases in antibody concentrations, which were detected at 

some occasions in the absence of culture-confirmed Pnc contacts. 
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Because of the small volume of many of the saliva samples, all antibody specificities 

could not be analyzed in all of the samples. Antibodies to PsaA, Ply and PspA were 

prioritized and these antibodies were measured in study I in all available saliva samples. 

These data were applied in study IV that evaluated the association between salivary 

antibodies against Pnc proteins and subsequent Pnc carriage and AOM. In study II, the 

selection of available saliva samples was made when analyzing salivary anti-PS 

antibodies; the types 6B, 14 and 19F were prioritized on the basis of earlier experience. 

Thus, anti-1, anti-6B, anti-11A, anti-14, anti-19F and anti-23F IgA concentrations were 

analyzed from the saliva samples of 87, 241, 99, 225, 246 and 93 children, respectively. 

Furthermore, in studies I and II, anti-PsaA, -PspA, -Ply, -1, -6B and -14 IgA 

concentrations were determined in saliva samples of 17 adults. These persons were 

considered to form a representative sample of the healthy Finnish adult population. In 

studies I and II, one of the aims was to determine the origin of salivary IgA antibodies, 

i.e., are these IgA antibodies locally produced or have they transduced from the serum. 

This was done by determining the presence of SC in salivary anti-PsaA, -Ply, -PspA, -

6B, -14 and -19F antibodies in a subcohort of 168 children. These children were picked 

randomly from the study children and the sample was thus expected to be unbiased. In 

study III, IgA1, IgA2 and IgA antibodies against PsaA and Pnc capsular PS type 14 

were measured in 39 saliva samples known to contain anti-PsaA and/or anti-PS14 IgA 

antibodies based on previous measurements (I, II). Due to the small number of children 

in the study IV, the results should be considered descriptive. 

 

To evaluate the relationship between previous Pnc contacts and natural salivary 

antibody production, the children were grouped into different categories in studies I and 

II. When analyzing the antibodies to Pnc protein and PS antigens, two and three 

categories were used, respectively. The children were grouped at each age according to 

their previous Pnc culture findings before the indicated age, irrespective of the time 

between the contact and antibody measurement. Thus, a child once assigned, for 

example, in the Pnc+ or Pnc+ 6B+ category stayed there through the whole follow-up, 

even if the Pnc contact had been detected in the beginning of it. Therefore, the GMCs of 

salivary antibodies may have been affected by the decrease of antibodies from the peak 

concentration over time. Since the onset and duration of Pnc carriage is difficult to 

define, and because some Pnc carriage may have gone undetected, the antibody 

concentrations may have differed from peak concentrations before the saliva samples 
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were collected. However, we did not try to find peak responses but to study the age-

specific development of salivary antibodies and to determine associations between the 

salivary antibody concentrations and the culture-confirmed Pnc contacts. 

 

 

2. Methodological aspects 
In the present study, saliva samples were used as a proxy of the mucosal immunity of 

the upper respiratory tract and in particular of the nasopharynx. Any studies evaluating 

the correlation between the antibody concentrations of nasopharyngeal samples and 

saliva has not been reported to our knowledge. Although antibody activity in the 

nasopharynx may be more relevant to Pnc, collecting saliva is a noninvasive and easily 

repeatable sampling method. Because of its easiness, collection of saliva is superior to 

such methods as nasopharyngeal washes, especially when repeated samples from infants 

or children are required. The results of this study show clear differences in the 

concentration of anti-Pnc IgA among exposed and apparently unexposed individuals, 

which suggests that saliva indeed serves as a proxy for local immune responses. Since 

the consecutive saliva samples used in the present study were collected at 6, 12, 18 and 

24 months of age, it was not possible to evaluate the immediate antibody response to a 

current Pnc contact, as has been done in studies of serum antibodies of the FinOM 

Cohort Study (Rapola et al. 2001; Soininen et al. 2002). 

 

Sample storage and enzymatic digestion have been suggested to have an adverse effect 

on the concentrations of IgA in saliva samples of some individuals (Brandtzaeg et al. 

1970). This instability of saliva causes problems in the transport and storage of the 

samples. The addition of enzyme inhibitors and glycerol, as well as storage of saliva 

samples at -70°C, have been shown to protect against IgA degradation (Butler et al. 

1990). However, Nurkka et al. (2003) have recently questioned the protective effect of 

the enzyme inhibitors. In the FinOM Cohort Study the collection of samples was tried to 

be made as simple as possible, and the addition of preservatives was not found practical. 

Furthermore, this would have diluted the samples and thus made the detection of low 

concentrations of natural anti-Pnc antibodies in saliva even more difficult. The saliva 

samples were immediately put into -70°C and stored at this temperature for further 

analysis. The samples were principally thawed only once, just before the assays 
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(exception: III). All these procedures were done to assure minimal degradation of 

antibodies in the saliva samples. 

 

Some of the saliva samples had to be stored up to three to four years before the 

measurement of the antibodies. In a study by Cripps et al. (1989), the salivary IgA 

molecules were shown to be stable for periods up to 2.5 years even at -20°C. In 

addition, repeated freeze-thawing of saliva samples did not cause degradation of sIgA in 

adult or infant saliva samples. In the present study, an adverse effect of long-term 

sample storage or freezing-thawing on salivary IgA concentrations was not detected. 

This was indicated in study III by the significant correlation between the repeated 

measurements of anti-PsaA and anti-PS14 IgA antibodies with a few years of interval. 

 

An EIA method used for analyzing serum samples (Rapola et al. 2000) was modified 

for the saliva samples on the basis of previous experience (Kauppi et al. 1995). The 

plates coated with PBS were used as background plates to control non-specific binding 

usual in EIAs analyzing saliva. Because of the heterogeneity of saliva, the samples were 

analyzed in triplicates, from which the means were calculated. The monoclonal 

antibody reagents were used to assure the specificity of the assays (Mestecky et al. 

1996). A good correlation was found between IgA anti-Pnc antibodies and SC in anti-

Pnc antibodies (I, II), as well as between IgA and the sum of IgA1 and IgA2 specific  

for PsaA or PS14 (III).    

 

PspA is a structurally and antigenically highly variable molecule. Different PspA 

molecules are grouped into three different families on the basis of the relatedness of 

their nucleotide and amino acid sequences (Hollingshead et al. 2000). Over 95% of the 

PspA molecules typed to date are members of families 1 and 2 (Nabors et al. 2000). At 

the time when the FinOM Cohort Study was started, the different PspA types were 

considered to be immunologically highly cross-protective, based on studies in animal 

models (McDaniel et al. 1991; Tart et al. 1996). Thus, a recombinant PspA fragment 

from Pnc strain Rx1 representing only family 1 was used as an antigen in the antibody 

measurements. Since then, it has turned out that cross-protection between different 

PspA types is minor (Miyaji et al. 2002). Our research group has recently measured 

antibodies in part of the FinOM Cohort Study serum and saliva samples using two 

different PspA antigens, from families 1 and 2. The results suggest that anti-PspA 
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responses after Pnc contacts in children are family-specific (Melin et al., data to be 

published). In study I, measurable amounts of salivary anti-PspA antibodies were 

detected in only 9 to 23% of the samples, and the anti-PspA concentrations remained 

low up to the age of 24 months. Thus, if both family 1- and family 2-specific PspA 

antigens had been used in the original antibody measurements, more anti-PspA positive 

saliva samples would probably have been detected.  

 

Several reports have stated that a considerable amount of anti-Pnc PS IgG antibodies 

measured by EIA in serum samples of unimmunized subjects are polyspecific, i.e. these 

antibodies are reactive also with other than the type-specific PS (Coughlin et al. 1998; 

Yu et al. 1999b; Soininen et al. 2000). The capsular PS of type 14, however, is an 

exception: serum anti-14 antibodies measured by EIA seem to be type-specific 

(Coughlin et al. 1998; Soininen et al. 2000). The EIA specificity can however be 

improved when the test sera are absorbed with an irrelevant Pnc capsular PS (Yu et al. 

1999b; Concepcion et al. 2001). Serotype 22F has been chosen for this purpose because 

the capsular PS of this type is readily available, but is not likely to be included in any 

future Pnc conjugate vaccine (Concepcion & Frasch 2001). In study II, the specificity of 

salivary anti-Pnc PS IgA antibodies could be evaluated. The data suggested that the 

salivary anti-Pnc PS antibodies would be mostly type-specific: the type-specific GMCs 

showed a clear increase with age in children with documented Pnc contact, but did not 

increase markedly in the saliva of Pnc+ ST- or Pnc- children. For instance, for Pnc types 

6B, 19F and 23F significant differences between children with homologous Pnc 

contacts (Pnc+ ST+) and children with heterologous Pnc contacts  (Pnc+ ST-) were 

detected in the saliva at several time points (I: Figure 1). This is opposite to serum anti-

Pnc PS antibodies (IgG) that seem to be highly polyspecific (Soininen et al. 2001). 

Some of the saliva samples used in this study have been tested previously with 22F-

neutralization EIA (unpublished data). The results suggest that the salivary anti-14 IgA 

antibodies are type-specific, while the salivary anti-6B and anti-19F IgA antibodies in 

Pnc- children are to some extent polyspecific but in Pnc+ children they are type-

specific. This suggests that the 22F-neutralization step would not have a significant 

influence on the present salivary data. 
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3. Effect of age on salivary antibody production 

 
3.1. Development of salivary antibody production by age 

Natural antibodies to the Pnc protein and PS antigens were detected already in the saliva 

of infants at six months of age and the antibody production increased by age. This was 

seen by the increase in the proportion of antibody positive samples and in the GMCs. 

The kinetics of antibody production to various antigens was slightly different. 

 

3.2. Maturation of mucosal immunity 

The sIgA system has been reported to have a rapid maturation pattern in a number of 

studies, while other studies have suggested a slower maturation for secretory immunity 

(See: Review of literature; 4.1.2.6. Early maturation of mucosal immune system). 

Particularly, mucosal immunity to pneumococcus has been suggested to be immature in 

young children compared to adults. In accordance with this, our results showed that the 

specific IgA concentrations in saliva samples of children by the age of 24 months did 

not reach the antibody concentrations detected in adults, in spite of the increase in the 

salivary anti-PsaA, -Ply, -PspA, -6B, -14 and -19F concentrations with age.  

 

The mucosal immunity to bacterial PSs has been suggested to mature earlier than the 

systemic immunity. The samples collected during the FinOM Cohort Study (Rapola et 

al. 2000; Soininen et al. 2001, I and II) offered us an opportunity to evaluate this issue 

(See: Discussion; 5. Comparison of the development of salivary and serum antibodies to 

Pnc protein and PS antigens). The salivary IgA production to Pnc PS antigens seemed to 

start earlier than the serum IgG development. Significant differences between the 

antibody concentrations of children in different categories (Pnc-, Pnc+ ST- and Pnc+ 

ST+) were detected at earlier ages and more frequently in saliva (II) than in serum 

(Soininen et al. 2001) during the follow-up.  
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4. Effect of previous pneumococcal contacts on salivary antibody 

production 

 
4.1. Anti-protein antibodies  

The increase of salivary antibody concentrations by age was associated with Pnc 

encounters (I). A larger proportion of samples positive for specific IgA and clearly 

higher mean antibody concentrations were detected in the saliva of children, in whom 

pneumococci were found by culture of nasopharyngeal or MEF samples on healthy or 

sick visits before the indicated age (Pnc+), than of children without positive Pnc culture 

findings (Pnc-). The higher antibody concentrations in the Pnc+ children seemed to be 

largely independent of whether the pneumococci were found during asymptomatic 

carriage or illness, although a tendency for higher anti-protein antibody concentrations 

was observed in the sick children. This might indicate a longer or more intense contact 

with the bacteria during illness.  

 

4.2. Anti-polysaccharide antibodies  

Previous contacts (carriage or AOM episodes) with the Pnc types 6B, 11A, 14, 19F and 

23F induced the production of salivary IgA antibodies to the homologous PSs (II). This 

was demonstrated by both the larger proportion of samples with detectable anti-Pnc PS 

IgA and higher antibody concentrations in the saliva of children with positive 

homologous culture findings (Pnc+ ST+) when compared to the children with respective 

negative cultures (Pnc+ ST- and Pnc-). The association of previous homologous Pnc 

contacts with the development of type-specific antibodies was also attested by the 

differences between the Pnc+ST+ and Pnc+ST- children, in particular with types 11A, 

14 and 19F.   

 

4.3. Anti-polysaccharide antibodies and contacts with heterologous pneumococcal 

serotypes 

Also contacts with the cross-reactive Pnc types 6A and 19A induced the development of 

salivary IgA antibodies to types 6B and 19F, respectively. The members of the same 

serogroup are biochemically closely related and it has been shown that antibodies 

evoked by the type-specific PS are cross-protective (Giebink et al. 1996; Yu et al. 
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1999a), though less antibodies might be needed for type-specific protection than for 

cross-protection (Väkeväinen et al. 2001).  

 

4.4. Anti-protein and anti-polysaccharide antibodies, and contacts with other 

bacteria with homologous surface antigens 

4.4.1. Protein antigens 

In individual children, the salivary IgA anti-PsaA, -Ply and -PspA responses were 

mainly seen in association with the Pnc positive culture findings (I: Figure 3). However, 

the relation was not always clear, since increases in the salivary antibody concentrations 

were also detected in the children in whom pneumococci had not been found (I: Figure 

3). The Pnc cultures were performed on a regular basis at one to six months’ intervals. 

Thus there is a possibility that Pnc- children may have been Pnc carriers at some stage, 

but this has not been detected. On the other hand, stimuli by other bacteria may account 

for some of the anti-PsaA and anti-PspA responses. Many Pnc surface antigens are 

conserved and several reports have suggested shared amino acid sequences between Pnc 

proteins and proteins of other streptococci belonging to the normal flora. A significant 

degree of homology has been reported between the primary structure of the PsaA 

protein and the putative lipoprotein adhesins of S. sanguis and S. parasanguis (Sampson 

et al. 1994; Paton et al. 1997). Also, the repeat domain of PspA has been shown to 

possess significant homology with the carboxy-terminal repeat regions of certain 

proteins of S. mutans, S. downei and Clostridium difficile (Yother & Briles 1992a). 

However, this repeat domain of PspA was not present in the recombinant PspA antigen 

that was used in this study. The role of these shared, most probably immunogenic, 

epitopes in the natural development of mucosal and systemic immunity against 

pneumococcus clearly needs to be evaluated.  

 

4.4.2. Polysaccharide antigens 

Some increases in salivary anti-PS concentrations were detected also in children who 

had contacts with the heterologous Pnc serotypes and even in children without positive 

Pnc culture findings (II: Figure 3). Antigenic structures cross-reactive with Pnc PSs 

have been reported in several common bacteria belonging to the normal nasopharyngeal 

and enteric flora (e.g. E. coli, Klebsiellae, and nongroupable streptococci) (Heidelberger 

et al. 1968, 1976, 1984; Lee et al. 1981; Robbins et al. 1975). The observation that 

cross-reactions with nonpathogenic nasopharyngeal bacteria appear to be frequent in 
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particular with Pnc PS of group 19 is of special interest (Lee et al. 1984). Thus, a 

potential explanation for the increases of antibody concentrations in saliva of Pnc- and 

Pnc+ ST- children could be that salivary anti-PS antibodies are also produced in 

response to the antigenic stimulus offered by other bacteria than pneumococci.  

 

 

5. Comparison of the development of salivary and serum antibodies to 

pneumococcal protein and polysaccharide antigens  

 
5.1. Antibodies to pneumococcal proteins 

Similar differences in the kinetics of antibody production against PsaA, Ply and PspA 

were seen in the saliva and sera of the FinOM Cohort Study. Both the production of 

salivary anti-PspA IgA (I) and the production of serum anti-PspA IgG started at later 

age (Rapola et al. 2000). The proportion of samples containing detectable anti-PspA 

was at all ages smaller in saliva than in serum. At the age of 18 months, 45% of the 

serum samples and 22% of the saliva samples were positive for anti-PspA, respectively 

(I, Rapola et al. 2000).  

 

In serum, the concentrations of natural anti-PsaA IgG reach adult levels already in early 

infancy (Rapola et al. 2000, Lindell et al. 2001). High concentrations of anti-PsaA 

antibodies were detected in serum samples of study children already at 6 months of age 

(Rapola et al. 2000). Furthermore, those young infants who had been carriers of 

pneumococci or had experienced Pnc AOM, developed high concentrations of serum 

antibodies to PsaA. At 12, 18 and 24 months of age, the GMC of serum anti-PsaA was 

even higher than in adults. This is opposite to the salivary anti-PsaA concentrations in 

children that did not reach the concentrations measured in adult saliva by the age of 24 

months (I). 

 

The production of salivary and serum anti-Ply antibodies showed similar kinetics. At 

the age of 24 months, the anti-Ply antibody concentration in saliva and serum of adults 

was 3 and 2 times higher than in children, respectively (I, Rapola et al. 2000). 
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5.2. Antibodies to pneumococcal polysaccharides 

Mucosal immunity to PS antigens has been suggested to mature earlier in life than the 

systemic response (Pichichero et al. 1981, 1983). The data obtained from the present 

study seem to support this. Production of salivary IgA to Pnc PSs appeared to start 

earlier than production of corresponding serum IgG (II: Figure 1). Significant 

differences between the GMCs of IgA antibodies against Pnc PSs in children of the 

different categories (Pnc+ST+, Pnc+ ST- and Pnc-) were detected at earlier age and 

more frequently in saliva (II) than in sera (Soininen et al. 2001). The difference in 

antibody development between saliva and serum seemed to be clearest for the 

“pediatric” types, i.e. types that have been regarded as poor immunogens in children 

(e.g. 6B, 19F, 23F). The children having encountered one of these serotypes produced 

antibodies to the respective serotype in saliva (II), but corresponding serum antibody 

production could not be detected at any time point during the follow-up of the same 

children (Soininen et al. 2001). 

 

By contrast, types 11A and 14 showed quite similar kinetics of salivary and serum 

antibodies. Development of both salivary and serum antibodies was seen at an early age, 

though salivary antibodies to type 14 were detected as early as at 6 months of age as 

compared to 12 months for serum antibodies (Soininen et al. 2001). The ability to 

respond to Pnc PS of type 14, although with modest antibody concentrations, is known 

to develop at an early age in both mucosa and serum (Mäkelä et al. 1980; Douglas et al. 

1983; Korkeila et al. 2000). For type 11A this has not been described, since type 11A is 

not included in the current Pnc conjugate vaccines and has thus not been the subject of 

active research.  

 

 

6. The origin of salivary IgA antibodies 
The majority of mucosal antibodies belong to the IgA class, although other Ig isotypes 

may also be present on the mucosal surfaces. Thus, the measurement of salivary IgA 

antibodies was a natural choice in the present study. One of the aims in studies I and II 

was to determine the origin of natural salivary IgA antibodies against Pnc antigens. To 

attain this, the presence of SC in antigen-specific salivary antibodies was determined. 

The significant correlation of specific IgA with the presence of SC in anti-PsaA, -PspA, 
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-Ply, -6B, -14 and -19F suggested that the salivary IgA was secretory and thus locally 

produced. 

 

Some of the saliva samples were detected to contain low levels of specific sIg without 

specific IgA. This difference in the proportions of sIg and IgA positive saliva samples 

could reflect the presence of sIgM. On the other hand, some of the samples contained 

low levels of specific IgA without sIg. These small differences most probably result 

from methodological factors (e.g. different sensitivities of the assays). 

 

 

7. IgA subclasses of anti-PsaA and anti-PS14 antibodies 
IgA occurs in two subclasses, IgA1 and IgA2. The predominant subclass both in serum 

and secretions is IgA1, but the share of IgA2 production has been shown to be relatively 

higher in secretions than in serum (Delacroix et al. 1982). A number of studies have 

shown that the ratio of IgA1 and IgA2 subclasses can depend on the nature of the 

antigen. Both the naturally and vaccine-induced IgA antibodies against TD bacterial 

protein antigens in saliva and in colostrum are predominantly of the IgA1 subclass 

(Brown et al. 1985; Conley & Delacroix 1987; Kilian et al. 1987; Ladjeva et al. 1989). 

By contrast, type 1 TI antigens, such as the cell wall lipopolysaccharides (LPS) of 

gram-negative bacteria and lipoteichoic acids of gram-positive bacteria, stimulate 

predominantly the production of natural IgA2 antibodies in saliva and colostrum 

(Brown & Mestecky 1985; Moldoveanu et al. 1987; Ladjeva et al. 1989). The typical 

type 2 TI antigens, such as bacterial PSs, can evoke both IgA1 and IgA2 responses in 

external secretions (Brown & Mestecky 1985; Ladjeva et al. 1989).  

In the present study, the subclass distribution of natural salivary IgA antibodies was 

determined against two distinct types of the Pnc surface antigen: a surface protein PsaA 

and a capsular PS of type 14 (PS14). This was done to evaluate, whether the ratio of 

IgA1 to IgA2 antibodies would indicate the T cell-dependency of the immune response. 

Though both subclasses are believed to have the same functional effect as such, the 

susceptibility of IgA1 to bacterial IgA1-proteases might affect its role in the prevention 

of infections. The current study made it possible to compare the proportions of natural 

IgA1 and IgA2 antibodies against the Pnc protein and PS antigen in the same 
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individuals and to evaluate, whether immunization with protein or PS containing 

vaccines would induce a different pattern.  

 

The predominant subclass for both salivary anti-PsaA and anti-PS14 IgA antibodies was 

IgA1. This was demonstrated by a larger proportion of IgA1 positive samples and a 

higher median concentration of specific IgA1 antibodies compared to IgA2. The median 

anti-PsaA IgA1/IgA2-ratio was higher than the corresponding median anti-PS14 

IgA1/IgA2-ratio. Thus, PS14 seemed to induce proportionally more IgA2 antibodies in 

saliva than PsaA.  

 

Several pathogenic bacteria inhabiting the mucosal membranes, including pneumococci, 

secrete IgA1-degrading enzymes, which may interfere with the effector functions of 

IgA1 on mucosal surfaces (Kilian et al. 1983a). Therefore, the higher mucosal levels of 

IgA2 antibodies may have important implications in the defense against these 

organisms. The IgA1-proteases cleave the IgA1 molecule in the hinge region to Fab and 

Fc fragments. It has been suggested that by coating themselves with functionally 

deficient Fab fragments, the pathogens could turn the defensive sIgA1 antibodies to 

their own advantage (Kilian & Reinholdt 1987). In the present study, IgA1 antibodies to 

PsaA and PS14 predominated in the saliva of children. This indicates that IgA1-protease 

produced by pneumococci and other respiratory pathogens may impair the functions of 

natural anti-Pnc IgA antibodies in 1- to 2-year-old children. 

 

Bacterial IgA1-proteases have been suggested to be important for the ability of bacteria 

to colonize mucosal membranes in the presence of specific sIgA antibodies (Kilian et 

al. 1996). Interestingly, Weiser et al. (2003) have recently shown that the modification 

of type-specific IgA1 antibodies by Pnc IgA1-protease enhances bacterial attachment to 

respiratory epithelial cells in a cell-culture colonization model. The antibody-enhanced 

adherence was only seen when IgA1 was cleaved by bacterial IgA1-protease and it was 

suggested that Fab fragments bound to the bacterial surface may neutralize the 

inhibitory effect of the negatively charged Pnc capsule on adhesion of host cells. On the 

other hand, IgA1-proteases function as antigens and induce systemic and secretory 

antibodies, some of which have an enzyme-neutralizing activity (Gilbert et al. 1983; 

Kilian et al. 1983b; Devenyi et al. 1993). For instance, human milk contains 



 

 

103

 
 

neutralizing antibodies to most bacterial IgA1-proteases and sIgA1 purified from human 

colostrum is resistant to most bacterial IgA1-proteases (Kobayashi et al. 1987). 

 

 

8. Salivary anti-PspA, anti-PsaA and anti-Ply antibodies in relation to 

subsequent pneumococcal carriage and AOM 
Since Pnc carriage and AOM are superficial infections on the mucosal surfaces of the 

nasopharynx or in their immediate vicinity, it has been hypothesized that mucosal 

antibodies might have a protective effect against them. To this end, the association 

between salivary anti-PspA, -PsaA and -Ply IgA antibodies, and the risk of subsequent 

Pnc carriage and Pnc AOM was evaluated during the first two years of life (IV and 

unpublished data). The presence of salivary anti-PsaA was associated with an increased 

risk of Pnc carriage throughout the follow-up and when antibodies were measured at six 

months of age, with an increased risk of subsequent Pnc AOM during the following six 

months (IV: Tables 1 and 2). Likewise, the presence of salivary anti-PspA, particularly 

at 18 months of age, appeared to be associated with an increased risk of asymptomatic 

Pnc carriage. In contrast, from 12 months onwards the low RR estimates suggested that 

the presence of salivary anti-PspA might be related to a decreased risk of Pnc AOM. 

However, since the anti-PspA antibodies were rarely detected in the saliva samples, the 

confidence intervals were very wide and statistical significance was not reached. The 

effect of salivary anti-Ply on the risk of Pnc carriage was negligible, while salivary anti-

Ply seemed to be associated with an increased risk of subsequent Pnc AOM during the 

entire follow-up, though the results were not statistically significant (Table 3).  

The relation of serum anti-PsaA antibodies to the risk of Pnc carriage and Pnc AOM has 

been previously explored (Rapola et al. 2003). As salivary antibodies to PspA, PsaA 

and Ply, serum antibodies to PsaA seemed to act paradoxically: the high anti-PsaA 

concentration in serum predicted a higher risk of Pnc carriage throughout the follow-up. 

Furthermore, higher serum anti-PsaA concentrations at six months of age were 

associated with an increased risk of Pnc AOM during the following six months. By 

contrast, from 12 months onwards, higher serum anti-PsaA concentrations were 

associated with a decreased risk of Pnc AOM, though not statistically significantly. 

Further, in children older than 9 months of age, high serum anti-PsaA concentration was 

associated with a decreased risk of Pnc involvement in AOM (Rapola et al. 2001).  
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Unquestionably, the results suggesting a risk-increasing effect of salivary and serum 

antibodies are unexpected and confusing. The association between serum anti-PsaA and 

the increased risk of Pnc carriage throughout the follow-up and Pnc AOM during the 

first year of life has been previously discussed and was suggested to be due frequent 

Pnc contacts indicating an environment with a high infection pressure (Rapola et al. 

2003). In the present study, any new information on the specific mechanisms behind the 

risk-increasing effect of the anti-protein antibodies was not obtained. Seemingly the 

interplay between the natural anti-Pnc antibodies, Pnc carriage and Pnc AOM is too 

complex for any straightforward conclusions. Anyway, these data should not be 

interpreted so that the antibodies to Pnc proteins are harmful in early infancy.  

 

It could be hypothesized that the immature state of mucosal surfaces during early 

childhood might have an influence on the risk of Pnc carriage and AOM. It is possible, 

that different adhesion mechanisms are used by pneumococci on mucosal surfaces of 

young infants than in older children. Thus, the mucosal immaturity during the first year 

of life might allow more efficient Pnc adherence and invasion than at older age, 

irrespective of the antibody responses induced by Pnc exposure. In older children, the 

maturation of mucosal surfaces, along with the maturation of the immunological status 

of the host, would reduce the chances to Pnc adherence and subsequent Pnc carriage and 

AOM. 

 

Although similar statistical models were applied to the serum and salivary antibody data 

of the FinOM Cohort Study, the obtained risk estimates cannot directly be compared. 

The reason for this is that the antibody concentrations were included as continuous 

variables in the serum models (Rapola et al. 2003) and as dichotomized variables in the 

salivary models (IV). Dichotomous antibody variables were considered more 

appropriate for the analysis of salivary anti-PspA, because the majority of anti-PspA 

concentrations were under the detection limit and thus constant (i.e., a large fraction of 

the data was already dichotomous). In spite of the risk estimates of the serum and 

salivary models being not directly comparable, the difference in point estimates for the 

association of the salivary and serum anti-PspA with the decreased risk of subsequent 

Pnc AOM during the second year of life is distinct enough to deserve attention in future 

studies. It can be speculated that mucosal antibodies may be more important in the 
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defense against Pnc AOM than the serum antibodies, which in turn play a central role in 

the defense against invasive Pnc disease. 

 

As mentioned above, the anti-PspA antibodies in the samples of the FinOM Cohort 

Study were measured using only one PspA antigen representing family 1. Our research 

group has previously determined the PspA family of the Pnc strains isolated from the 

clinical samples of 50 children who participated in the FinOM Cohort Study. In 

addition, anti-PspA antibodies in serum and still available saliva samples (n=20) of 

these 50 children have been measured by using PspA antigens from families 1 and 2. 

PspA molecules either of family 1 or of family 2 have been found on the surface of the 

isolated Pnc strains (Melin et al.; data to be published). Furthermore, the results from 

the serum and salivary antibody measurements suggest that the anti-PspA responses in 

children after Pnc contacts are mostly family-specific, i.e. children develop anti-PspA 

antibodies specifically against the PspA family that has been present on the surface of 

the encountered Pnc strain (Melin et al., data to be published). Among children at 6 

months of age who had detectable salivary anti-PspA antibodies, an association with an 

increased risk of Pnc AOM during the following six months was detected. However, 

there is the possibility that the salivary anti-PspA antibodies have been induced by a 

strain of one PspA family, and the increased AOM risk is due to a strain of another 

PspA family. Thus, there may be a stronger protective effect of salivary anti-PspA 

against Pnc AOM after the age of 12 months, if the subsequent Pnc strain belongs to the 

same PspA family. 

 

The mucosal active immunization with Pnc protein and PS antigens and Pnc PS-protein 

conjugate antigens in animal models, as well as passive immunization, have shown that 

the mucosal anti-Pnc antibodies are able to reduce Pnc carriage and disease (VanCott et 

al. 1996; Wu et al. 1997; Malley et al. 1998, 2001; Jakobsen et al. 1999; Seong et al. 

1999; Briles et al. 2000a; Saeland et al. 2001). The naturally acquired salivary anti-

PspA, anti-PsaA or anti-Ply antibodies, however, seem not to be associated with 

decreased risk Pnc carriage during the first two years of life. A reason for this may be 

that the antibody concentrations induced by natural exposure to Pnc remain low. 

However, an optimally designed mucosal immunization could evoke higher and more 

protective immune responses than natural Pnc contacts.  
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CONCLUSIONS 
 

The following conclusions were made on the basis of the studies in this thesis: 

1. Even young children are capable of producing salivary antibodies to the Pnc protein 

and PS antigens (I, II). 

2. The production of salivary IgA specific for Pnc protein and PS antigens increases by 

age. The production of the salivary IgA antibodies shows slightly different kinetics 

depending on the Pnc antigen (I, II). 

3. The increase of salivary anti-Pnc antibody production with age is related to Pnc 

contacts (I, II). 

4. Natural salivary anti-Pnc IgA antibodies are secretory, i.e. locally produced (I, II). 

5. IgA1 is the predominant subclass of the natural salivary IgA antibodies to Pnc 

protein and PS antigens, but the proportion of IgA2 antibodies is relatively higher 

for anti-PS antibodies (III). 

6. Natural salivary anti-PspA, anti-PsaA and anti-Ply antibodies are not associated 

with protection against Pnc carriage (IV). 

7. The presence of salivary anti-PspA and anti-PsaA at 6 months of age seems to be 

associated with an increased risk of subsequent Pnc AOM during the following 6 

months. Salivary anti-Ply may be associated with an increased risk of Pnc AOM 

during the first two years of life (results not statistically significant) (IV). 

8. From 12 months of age onwards the salivary anti-PspA IgA antibodies seem to be 

associated with a decreased risk of subsequent Pnc AOM, though the results did not 

reach statistical significance (IV).  
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SUMMARY 
 

The primary site of Pnc infections is the mucosal surfaces of the human upper 

respiratory tract. Local mucosal immunity is likely to act as an important first line 

defense against Pnc carriage and subsequent disease.  

 

AOM is a mild, but extremely common disease during childhood. The most common 

bacterium causing AOM is S. pneumoniae. The efficacy of the current Pnc PS and 

conjugate vaccines against Pnc AOM is not optimal, which has stimulated an interest in 

alternative Pnc vaccination strategies. The promising complementary or alternative 

approaches for prevention of Pnc infections include the development of Pnc protein 

vaccines and Pnc mucosal vaccines. Mucosal and systemic vaccination with the Pnc 

protein vaccine candidates, such as PsaA, PspA and Ply, has been shown to be an 

effective way to offer protection against Pnc carriage and disease in animal models. 

However, more basic work will still be required before considering these kinds of 

applications in humans. This work includes characterizing the development of natural 

mucosal and systemic immunity against pneumococcus. 

 
In the present study, the development of natural salivary immunity against several Pnc 

protein and capsular PS antigens was evaluated in 329 children who were followed from 

2 to 24 months of age in the FinOM Cohort Study. For the first time, the natural 

development of mucosal IgA antibodies to Pnc vaccine candidates was evaluated in a 

longitudinal study setting. Evidence for the ability of young children to respond to Pnc 

carriage and AOM by producing secretory antibodies in saliva against all studied Pnc 

antigens was demonstrated.  

 

The recurrent nature of Pnc AOM indicates that the antibody responses induced by 

natural exposure to Pnc in early childhood are not strong enough to offer effective 

protection against Pnc infection. In accordance, the results of this thesis suggest that the 

naturally developed salivary anti-PsaA, anti-PspA and anti-Ply IgA antibodies are not 

associated with the protection against Pnc carriage or AOM during the first year of life. 
However, from 12 months of age onwards the salivary anti-PspA IgA antibodies may 

offer some protection against Pnc AOM. 
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Early immunization by the mucosal route with a Pnc vaccine would probably induce 

higher mucosal antibody concentrations and thereby provide better protection against 

disease than the natural Pnc stimuli. Results from animal models suggest that optimally 

designed mucosal immunization is able to effectively protect against Pnc carriage and 

disease. Thus, further evaluation of mucosal immunization as a means of inducing 

protection against Pnc disease in humans is considered worthwile.  
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FUTURE CONSIDERATIONS 

 
The FinOM Cohort Study material is unique in having prospective carriage and AOM 

data with the consecutive serum and saliva samples. At the moment, the saliva samples 

are no more available, but the remaining serum samples will be used for the study of 

antibodies to other Pnc protein antigens, which are currently considered as Pnc vaccine 

candidates. The FinOM Cohort Study has made it possible to investigate the 

development of natural mucosal immunity against pneumococcus. In future, the Pnc 

proteins that were used as antigens in the present study will hopefully be included in a 

Pnc vaccine. Then, the serological methods modified for the purposes of this study may 

be utilized to evaluate the differences between the natural and vaccine-induced mucosal 

anti-Pnc immunity and further the role of mucosal immunity in the defense against Pnc 

infections. Thus, we are looking forward to the future immunization studies with Pnc 

protein vaccines, as well as with Pnc mucosal vaccines. 

 
As mentioned above, high concentrations of anti-PsaA IgG antibodies were detected in 

serum samples already at 6 months of age and in response to Pnc contacts (Rapola et al. 

2000). Since Pnc carriage in Finnish children is rare at this age (Syrjänen et al. 2001), 

these antibodies may have been induced by some other stimulus than pneumococcus. 

Therefore, the potential role of cross-reacting antigens of oral and nasopharyngeal 

normal streptococcal flora on the development of natural immunity against 

pneumococcus will be evaluated. A subpopulation of 50 children has been separated 

from the FinOM Cohort Study for the purposes of this study. The development and 

composition of the normal streptococcal flora of these 50 children has been carefully 

followed (Könönen et al. 2002). The oral and nasopharyngeal streptococcal isolates 

have been cultured during the first two years of life, identified to species and subspecies 

level and stored in skimmed milk at -70°C. These streptococcal isolates will be used in 

the study. 

 

The mucosal immunity to bacterial PS antigens has been suggested to mature earlier in 

life than the systemic immunity. To address this issue, the kinetics of serum and 

salivary antibody production to Pnc PS (types 6B, 14 and 19F) and protein (PsaA, PspA 

and Ply) antigens in the FinOM Cohort Study will be compared. This will be done to 
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evaluate, whether the antibody responses in saliva might appear at younger age and/or 

with greater intensity than in serum. 

 

The search for an efficient vaccine against Pnc infections continues. Mucosal 

immunization with Pnc antigens in animal models has shown that the vaccine-induced 

mucosal antibodies are able to reduce Pnc carriage and disease. In future, Pnc vaccine 

administered via the mucosal route may thus prove to be a welcome addition or 

alternative for the current parenteral immunization strategies against pneumococcus. 
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