The rising rate of methicillin-resistant *S. aureus* (MRSA) infections worldwide causes more challenges in preventing transmission and infections. Methicillin resistance is encoded by the mecA gene, which is carried by the staphylococcal cassette chromosome mec (SCCmec) across staphylococcal species. It is not native to *S. aureus*. Coagulase-negative staphylococci (CNS) are considered as the possible source for mecA gene.

The genetic characteristics and putative horizontal transfer of SCCmec in the Finnish *S. aureus* and CNS were studied by using standard microbiological and molecular typing techniques. A high variety of different SCCmec types were found in clinical methicillin-resistant *S. epidermidis* (MRSE) and in colonising MR-CNS. Some of them were similar to the SCCmec types of MRSA. Certain individuals carried MRSA and MRSE that had the same SCCmec type V. These findings suggest that horizontal gene transfer between Finnish staphylococci may have occurred.

Genetic studies of staphylococci will provide deeper understanding of the mechanisms involved in the development and spread of resistance. SCCmec typing is important for understanding the genetic background of the strains.
Methicillin Resistance in Staphylococci:
Horizontal Transfer of Mobile Genetic Element (SCC\textit{mec}) between Staphylococcal Species

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Medicine, University of Helsinki, for public examination in Auditorium V, University, Main Building, Fabianinkatu 33, on October 15th 2010 at 12.00 noon

National Institute for Health and Welfare, Helsinki, Finland
and
Faculty of Medicine, University of Helsinki, Finland

Research 35
Helsinki 2010
Cover photo: *Penicillium notatum* (or *P. chrysogenum*), a species of fungus used to produce the antibiotic penicillin. It is the first antibiotic discovered, and is used for treatment of bacterial (*staphylococcus*) infections. It was also the trigger for developing bacterial resistance mechanism. This photo is provided by and copyrighted to Dennis Kunkel Microscopy, Inc. (www.denniskunkel.com).
Supervised by

Docent Jaana Vuopio, MD, PhD
Department of Infectious Disease Surveillance and Control
National Institute for Health and Welfare
Helsinki, Finland

Docent Anni Virolainen-Julkunen, MD, PhD
Department of Infectious Disease Surveillance and Control
National Institute for Health and Welfare
Helsinki, Finland

Reviewed by
Professor Matti Viljanen, MD, PhD
Department of Medical Microbiology
University of Turku
Finland

Professor Mikael Skurnik, PhD
Department of Bacteriology and Immunology
Haartman Institute, University of Helsinki
Finland

Opponent
Professor Johanna U. Ericson Sollid, PhD
Department of Medical Biology
Medical Faculty, University of Tromsø
Tromsø, Norway
بسم الله الرحمن الرحيم

In the name of God, the Most Gracious, Most Merciful

To my parents
ABSTRACT

Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium.

S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin.

Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr) gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec (SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci.

The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland.

The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and
1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains.

Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person.

Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species.

Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.

Keywords: antibiotic; methicillin-resistant *S. aureus*; methicillin-resistant coagulase-negative *staphylococcus*; horizontal gene transfer; staphylococcal chromosome cassette mec (SCCmec); molecular typing.
ملخص الأطروحة

البحث مقدم من د. صالح عبد الله إبراهيم قدارة بعنوان مقاومة الميثسلين في البكتيريا العنقودية المكورة والانتقال الأفقي لعناصر الجينية العنقودية مقاومة بين أنواع الميثسلين، بإشراف كلية الطب، جامعة هلسنكي والمؤسسة الوطنية للصحة والرعاية الاجتماعية، البحث 3510/2010.

بالرغم من وجود المضادات الحيوية فإن الأمراض المعدية تعتبر مسبب رئيسي للوفيات في العالم. البكتيريا العنقودية المكورة تسبب التهابات عديدة ومنفثة الشدة، مما يمكن أن يواجده في أجزاء كثيرة من جسم الإنسان دونما ضرر، وغالباً ما يكون الغشاء الأفقي هو موطن البكتيريا العنقودية الذهبية S. aureus، وهذا الاستئناف يعتبر عاملاً حاسماً لانتشار هذه البكتيريا.

تعتبر البكتيريا العنقودية الذهبية S. aureus حيث تشكل تحدياً حقيقياً للميدان الطبي، إن أحد أكثر الجوانب إشكالية في هذا staphylococi الشأن هي الزيادة المطردة للبكتيريا المقاومة للميثسلين في المستشفى والمجتمع في العالم دون استثناء بما في ذلك فنلندا. وعلوة على ذلك فإن معظم العنقوديات الإكلينيكية سلبية التختير المعزولة (CNS) أظهرت مقاومة للميثسلين.

مقاومة الميثسلين في البكتيريا العنقودية الذهبية ناتج عن وجود جين mecA و S. aureus. و بهذا الجين يقع على جزيرة جينومية على الكروكوسوم وتسمى جزيرة mecA وثلاثة مناطق تسمى SCCmec، وهذه الجزيرة تتكون من جينين مركبين وهما و ccr و SCCmec وغيرها من الجزر الجينومية junkyard J regions و عدة فروع منها. إن جزيرة S. aureus غير موجودة أصلاً في S. epidermidis وが増えている في CNS تعتبر سلبية التختير. قد تكون مكان تكسير meA في الأنواع المئات CNS SCCmec و S. aureus SSCmec موجودة حالياً في البكتيريا الحيوية. من المعروف حتى الآن أن S. aureus و S. epidermidis و S. hominis و S. haemolyticus و S. simulans بين SCCmec.

و كما أنه تم دراسة الخصائص الجينية للعينات الهولندية المختارة في البكتيريا العنقودية سلبية التختير MRSA (MRSA) التي أُخذت من مستشفى في فنلندا، في الفترة الزمنية من 1990 إلى 1998 كما تم دراسة علاقاتها الوراثية الجينية بين بعضها البعض.
and on the analysis of another MRSE sample, such as MRSA, which were tested for SCCmec elements. The SCCmec elements were found to have unique patterns in each sample, indicating that they represent different strains of the species. These findings suggest that SCCmec elements can be used as markers to identify and differentiate between different strains of the species, which is important for the study of antimicrobial resistance and the transmission of these elements among strains through genetic exchange.

The primary keywords are: antimicrobial resistance; SCCmec elements; genetic exchange; hospital; laboratory; analysis.
TIIVISTELMÄ

Antibioottien olemassaolosta huolimatta tartuntataudit ovat yksi maailman yleisimpiä kuolinsyitä. Vaikka stafylokokkit aiheuttavat monia vakavuudeltaan eriasteisia infektioita, voivat ne esiintyä myös harmittomina ihmisen elimistössä. Staphylococcus aureus löytyy yleisimmin nenän limakalvolta, mitä pidetään riskitekijänä kyseisen bakteerin leviämiselle.

S. aureusta pidetään tärkeimänä stafylokokkilajina ja se asetetaa haasteita lääketietelle. Yksi sen ongelmallisimmista piirteistä on metisilliniresistenttien S. aureus (MRSA) –bakteerikantojen jyrkkä lisääntyminen sairaaloiissa ja avohoidossa, niin Suomessa kuin maailman ulkopuolella. Lisäksi kliininä koagulaasinenegatiivista stafylokokki-kannoista (KNS) suurin osa on vastustuskykyisiä metisilliniille.

Metisilliiniresistentin stafylokokkilajikohtauksen epidemiologian arviointi on tarpeen, jotta voidaan ymmärtää näiden kantojen ilmaantumisen ja kehittää asianmukaisia seurantastrategioita SCCmec geenikasetin tyyppittäminen on olen naista KNS:stä kehittyvien MRSA -kantojen ymmärtämiselle ottaen huomioon sen, että MR-KNS saattaa edustaa geenipoolia, jossa syntyy jatkuvasti uusia SCCmec tyyppejä, joista MRSA saattaa mahdollisesti olla peräisin.

Asiasanat antibiootti; metisilliiniresistentti *S. aureus*; metisilliiniresistentti koagulaasi-negatiivinen staphylokokki; horisontaalinen geenin siirto; staphylokokkien kromosomi-kasetti *mec* (SCCmec); molekylaarinen tyypitys.

Infektionssjukdomar är den ledande dödsorsaken i världen idag fastän antibiotikan har uppfunnits. Stafylokokker orsakar flera slag av infektioner med varierande gravhet men bakterierna kan också förekomma fredligt på flera ställen av människokroppen. Oftast koloniserar Staphylococcus aureus näsans slemhinnor, något som anses vara en riskfaktor för spridning av bakterien.

Även de molekylära karaktärsdragena hos en del av de kliniska meticillinresisten-
ta *S. epidermidis*-bakterierna (MRSE) som påträffats på finländska sjukhus mel-
lan år 1990 och 1998 undersöker. Isolatens genetiska likhet kunde jämföras
både inom gruppen och med internationellt kända genotyper av MRSE och ge-
mensamma egenskaper hos SCCmec-kassetterna i MRSE och MRSA kunde
påvisas. De kliniska MRSE-stammarna var genetiskt besläktade sinsemellan.
Elva av PFGE-typerna kunde anknytas till sekvenstyp ST2, en genotyp som har
påträffats runt om i världen. En av MRSE-stammarna bar sannolikt på två
SCCmec-typer, typerna III och IV. Båda SCCmec-typerna fanns också bland
MRSA-stammarna.

I en inrättning för långtidsvård i norra Finland bröt år 2003 en MRSA-epidemi ut
som förorsakades av en MRSA-stam med en SCCmec-kassett av typen V. Sex
månader efter utbrottet undersöker SCCmec-kassetterna hos de meticillinresis-
tenta stafylokocker som påträffades i prov från klienternas näshål. En stor del
av klienterna var MR-KNS-bärare och mångfalden av SCCmec-typer var mycket
stor. MRSE var den mest utbredda av KNS-arterna. Horisontell överföring av
SCCmec kan ha förekommit eftersom samma person bar på både MRSA- och
MRSE-isolat med SCCmec av typen V.

Även SCCmec-kassetten hos kliniska *S. sciuri*-isolat undersöker. Analysen
visade att vissa delar av SCCmec-kassetten påträffades i *S. sciuri* och att *pls-
gen* var allmän. Denna observation stöder hypotesen att stafylokockarterna
utbyter genetiskt material sinsemellan.

För att förstå uppkomsten av meticillinresistenta stafylokocker och för att ut-
veckla lämpliga kontrollåtgärder är det nödvändigt att undersöka stafylokockernas epidemiologi. Att granska SCCmec är ytterst viktigt för att förstå hur MRSA
uppkommer från KNS, eftersom forskningen tyder på att MR-KNS-populationen
fungerar som den genpool ur vilken ständigt nya SCCmec-typer bildas för att
sedan möjligen överföras till *S. aureus*.

Nyckelord: antibiotika; meticillinresistent *S. aureus*; meticillinresistent koagu-
lasnegativ stafylokock; horisontell genöverföring; stafylokockernas resistenskas-
sett SCCmec; molekylär typning.
CONTENTS

LIST OF ORIGINAL PUBLICATIONS .. 17
ABBREVIATIONS .. 18
1 INTRODUCTION ... 20
2 REVIEW OF THE LITERATURE ... 22
 2.1 Staphylococci ... 22
 2.1.1 Genus Staphylococcus .. 22
 2.1.2 Cell wall of staphylococci ... 23
 2.1.3 Virulence factors of staphylococci ... 24
 2.2 Clinical significance of staphylococci ... 26
 2.2.1 Carriage .. 26
 2.2.2 Staphylococcal infections ... 27
 2.2.3 Epidemiology of staphylococcal infections 28
 2.3 Genomes of staphylococci .. 30
 2.4 Antimicrobial agents .. 30
 2.4.1 Modes of action and classification of antimicrobial agents 31
 2.4.2 Mechanisms of antibiotic resistance ... 32
 2.4.3 β-lactam agents and resistance to β-lactams 32
 2.5 Horizontal gene transfer (HGT) .. 33
 2.5.1 Mechanisms of horizontal gene transfer 33
 2.5.2 Mobile genes .. 34
 2.5.3 Evidence of horizontal gene transfer ... 36
 2.5.4 Significance of horizontal gene transfer 37
 2.6 Resistance mechanisms in bacteria in the 'pre-antibiotic' era 37
 2.7 Methicillin-resistance in staphylococci ... 38
 2.7.1 Evolution of MRSA ... 38
 2.7.2 The genetic basis of methicillin resistance 39
 2.8 Tools for typing staphylococci ... 51
 2.8.1 Phage typing .. 52
 2.8.2 Antimicrobial susceptibility testing .. 53
 2.8.3 Ribotyping .. 53
 2.8.4 Pulsed-field gel electrophoresis ... 53
 2.8.5 SCCmec typing .. 54
 2.8.6 Multilocus sequence typing .. 55
 2.8.7 spa typing .. 56
 2.8.8 Multiple-locus variable-number tandem-repeat typing 56
 2.8.9 Tools for typing of Finnish MRSA .. 57
3 AIMS OF THE STUDY ... 59
LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following original publications, which are referred to in the text by their Roman numerals.

The original publications are reproduced with the permission of copyright holder.
ABBREVIATIONS

ATCC American type culture collection
CA-MRSA Community-acquired methicillin-resistant
Staphylococcus aureus
CC Clonal complex
ccr Cassette chromosome recombinase
CLSI Clinical and Laboratory Standards Institute
(formerly NCCLS)
CNS Coagulase-negative Staphylococcus
dr Direct repeats
EMRSA Epidemic MRSA
HA-MRSA Hospital-Acquired MRSA
HGT Horizontal gene transfer
HUCH Helsinki University Central Hospital
ICU Intensive care unit
IR Inverted repeats
IS Insertion Sequence
kbp kilo base pairs
KTL /THL National Public Health Institute (Kansanterveyslaitos); name changed on 1.1.2009 to National Institute of Health and Welfare (Terveyden ja hyvinvoinnin laitos; THL)
LTCF Long-term care facility
mecA Gene coding for penicillin-binding protein2a (PBP2a)
MIC Minimal inhibitory concentration
MLST Multilocus sequence typing
MLVA Multiple-locus variable-number tandem repeat typing
MPCR Multiple PCR
MR-CNS Methicillin-resistant-CNS
MRSA Methicillin-resistant Staphylococcus aureus
MS Membrane-spanning domain
MSSA Methicillin-sensitive Staphylococcus aureus
NICU Neonatal intensive care unit
ORF Open reading frame
PB Penicillin-binding domain
PBPs Penicillin-binding proteins
PCR Polymerase chain reaction
PFGE Pulsed field gel electrophoresis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pls</td>
<td>Plasmin-sensitive protein</td>
</tr>
<tr>
<td>PVL</td>
<td>Panton-Valentine leukocidin</td>
</tr>
<tr>
<td>SCCmec</td>
<td>Staphylococcal cassette chromosome mec</td>
</tr>
<tr>
<td>Spa</td>
<td>Staphylococcal protein A</td>
</tr>
<tr>
<td>ST</td>
<td>Sequence type</td>
</tr>
<tr>
<td>VISA</td>
<td>Vancomycin intermediate-resistant S. aureus</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable-number tandem repeat</td>
</tr>
<tr>
<td>VRSA</td>
<td>Vancomycin-resistant S. aureus</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Staphylococci are a diverse group of bacteria that can cause diseases ranging from minor skin infections to life-threatening bacteremia. They are also part of normal flora/microbiota in humans. Within the genus *Staphylococcus*, *S. aureus* is the main human pathogen and *S. epidermidis* the most important opportunistic pathogen. Overall, staphylococci are a major cause of both nosocomial and community-acquired infections

β-lactams were the first group of antimicrobial agents used to treat staphylococcal infections. However, penicillin was soon discovered ineffective due to β-lactamases, that is, enzymes produced by staphylococci and capable of cleaving the β-lactam ring. The introduction of β-lactamase resistant β-lactams such as methicillin into medical practice in early 1960s was followed by the emergence of methicillin-resistant staphylococci. Nowadays, the majority of CNS isolated from hospitalised patients express resistance to methicillin. Among nosocomial isolates the incidence of methicillin resistant *S. aureus* (MRSA) is high in some countries; reaching even 70%\(^2\). In Finland, methicillin resistance among *S. aureus* is still relatively low but the annual number of MRSA cases has increased significantly in recent years, further challenging the prevention of transmission and infections caused by it. MRSA infections are treated with vancomycin, but the first high-level vancomycin-resistant isolates (VRSA) have already been described\(^3\). There are few effective antibiotics on the market for treating MRSA infections, and very few if any are expected to be developed in the near future\(^4\).

Resistance to methicillin is determined by the *mecA* gene, which encodes an additional penicillin-binding protein (PBP2a) with low affinity for β-lactams. The *mecA* gene, which is not native to *S. aureus*,\(^5\) is considered to have originated in CNS. In these, the *mecA* gene is carried in a chromosomal element called the SCCmec. The SCCmec varies in size (24-67 kbp), and eight main types of SCCmec (I-VIII) have been identified to date\(^6\)-\(^14\). The current hypothesis is that SCCmec serves as a carrier *mecA* gene across staphylococcal species. In addition, it has been hypothesised that MRSA originated through the transfer of SCCmec into a limited number of MSSA lineages.

Structural typing of this chromosomal region is vital for understanding transmission routes and the genetic background of the strains. There are several reasons why research on staphylococci and the mobile element
SCCmec is justified and important. Firstly, our knowledge about commensal and clinical MSSA and methicillin-resistant coagulase-negative staphylococcal strains in Finland is sparse. Secondly, staphylococci are part of the normal human flora and possess great potential as pathogens. If antimicrobial resistance becomes common amongst these bacterial species, as has already happened with many CNS species, treatment of infections caused by the resistant strains becomes difficult and expensive. It may even increase the risk of mortality although this remains controversial. The carriage of multi-resistant staphylococci is often long-term which challenges preventive measures and requires continuous surveillance. Thirdly, detailed studies of staphylococci on the genetic level allow us to gain a deeper understanding of the mechanisms involved in the development and spread of resistance markers. Mapping bacterial factors linked to resistance and the capacity to spread may help in developing targeted diagnostics, and thus improve the treatment, surveillance and prevention of infections caused by this group of bacteria.

The aim of this study is to analyze the genetic characteristics and putative horizontal transfer of mobile genetic elements (i.e. SCCmec) in *S. aureus* and the coagulase-negative staphylococcal population in Finland.
2 REVIEW OF THE LITERATURE

2.1 Staphylococci

2.1.1 Genus \textit{Staphylococcus}

Staphylococci were first detected and cultured by Koch (1878) and Pasteur in 1880, but Ogston and Rosenbach made the initial detailed studies: In 1881 Ogston named the clustered micrococci "staphylococci," from the Greek word “staphyle”, meaning bunch of grapes. In 1884, Rosenbach isolated two strains of staphylococci, which he named for the pigmented appearance of their colonies; \textit{Staphylococcus aureus}, from the Latin aurum for gold, and \textit{Staphylococcus albus} (now called \textit{epidermidis}), from the Latin albus for white. Nowadays, the genus \textit{Staphylococcus} is classified as a member of the family \textit{Micrococcaceae}, but the staphylococci are phylogenetically distantly related to any other genera in the family. A wide variety of genetic criteria indicates that the genus \textit{Staphylococcus} forms a coherent and well-defined natural group that is very different from the genus \textit{Micrococcus}. According to 16s RNA analysis, the genus \textit{Staphylococcus} belongs to the broad \textit{Bacillus-Lactobacillus-Streptococcus} cluster. The planococci, enterococci and bacilli are the closest relatives to staphylococci.

Forty species and 17 subspecies of the genus \textit{Staphylococcus} have been identified. Staphylococci are Gram-positive nonmotile, nonsporulating spherical bacteria (size range 0.5–1.2 µm) that occur in microscopic clusters resembling grapes. They are catalase-positive, oxidase-negative and facultative anaerobes (i.e. capable of both aerobic and anaerobic growth). Staphylococci are differentiated by their ability to produce coagulase in the coagulase-positive (\textit{S. aureus}) and CNS. In addition, \textit{S. aureus} can be distinguished from the other staphylococcal species by the fermentation of mannitol and trehalose and by producing deoxyribonuclease (DNase). However, these tests cannot distinguish \textit{S. aureus} from all other staphylococcal isolates. When grown on blood agar, cultures of \textit{S. aureus} typically yield golden-yellow colonies that are usually beta-hemolytic.

In the clinical laboratory, the identification of staphylococcal species and subspecies has been facilitated by the availability of rapid and miniaturised kit identification systems, some of which may be processed and interpreted by automated instrumentation combined with the computer technology (e.g. the API ID32 Staph system, bioMerieux, Marcy l’Etoile,
France)26–28. Species and subspecies identification can give important information in assessing clinical significance and guiding etiological diagnosis and management of infections21, 29–33.

2.1.2 Cell wall of staphylococci

The cell wall is the outermost component common to all bacteria (except for \textit{Mycoplasma} species, which are bound by a cell membrane, not a cell wall). The bacterial cell wall is a single rigid net, and is cross-linked to itself in many places to provide structural support. Under the electron microscope it appears as a thick homogeneous structure (about 20 to 40 nm). The cell wall consists of the peptidoglycan (also called murein) with attached polysaccharides (i.e. capsule), proteins and teichoic acids34–36 (Figure 1).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Schematic diagram of the basic structures of gram-positive bacteria cell wall (adapted from :http://www.cehs.siu.edu/fix/medmicro/genmicr.htm).}
\end{figure}

\textit{S. aureus} peptidoglycan is a polymer that consists of long glycan chains. The glycan chain is composed of alternating N-acetylmuramic acid and N-acetylglucosamine molecules. Tetrapeptides consisting of both D- and L-amino acids join the adjacent glycan chains by the muramic acid residues. In CNS, the peptidoglycan differs from that of \textit{S. aureus} mainly in the inter peptide bridges (some of the glycins are replaced by L-serine)35. The rigid peptidoglycan is important in defining the shape of the cell and
in preventing osmotic lysis. Peptidoglycan is a good target for antimicrobial agents because it is present in bacteria but not in human cells. Penicillin-binding proteins (PBPs) catalyze the cross-linking of peptidoglycan subunits during bacterial cell wall assembly. Teichoic acids are substituted polysaccharides containing ribitol or glycerol residues joined through diphosphoester linkages. These polysaccharides extend through the entire peptidoglycan layer and appear on the cell surface. The majority of *S. aureus* are enclosed in a polysaccharide capsule, eleven serotypes have been reported and 75\% of human infections are due to serotypes 5 and 837, 38. The importance of the staphylococcal cell wall in virulence, epidemiology and genomic evolution has been described in numerous studies34, 37, 39–44.

2.1.3 Virulence factors of staphylococci

Bacteria are pathogens when they have the ability to cause disease. This ability is known as pathogenicity and virulence is a degree of the pathogenicity. Virulence factors are elements produced by a pathogen which contribute to pathogenicity. The surface proteins of *S. aureus* have been shown to be virulence factors in different infection models, although the mechanism of the action of many of them has not yet been revealed45. In the majority of diseases caused by *S. aureus*, the pathogenesis depends on the combined actions of several virulence factors. The virulence factors known to date include (i) surface structures, (ii) invasins, (iii) toxins, (iv) biochemical properties, and (v) determinants for resistance.

(i) The surface proteins (e.g. clumping factor, collagen binding protein, extracellular adherence protein, elastin-binding protein, fibronectin binding protein) promote attachment and colonisation of host tissues, or inhibit phagocytic engulfment (capsule and protein A) and promote immunological disguise (protein A, coagulase, and clotting factor). (ii) Invasins include several enzymes secreted by invasive bacteria that promote bacterial spread in tissues and play a role in pathogenesis. Among the most important enzymes are leukocidins (e.g. Panton-Valentine leukocidin (PVL), kinases and hyauronidase (iii) Membrane-damaging toxins disrupt eukaryotic cell membranes (hemolysins and leukotoxin) and superantigens contribute to the symptoms of septic shock (e.g. toxic shock syndrome toxin (TSST). (iv) Some biochemical properties increase staphylococcal survival in phagocytes (i.e., catalase has the ability to convert hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) to water and oxygen and the carotenoid pigment has an antioxidant effect.). (v) The determinants for inherent and acquired
resistance to antimicrobial agents can also be considered virulence factors \(^{46-48}\). Examples of some of these virulence factors are given in the following: Plasmin-sensitive protein (Pls) is an example of the pathogenic potential of \textit{S. aureus} reflected by surface proteins with adhesive and invasive functions. The \textit{pls} gene has been shown to attenuate bacterial binding to immobilised fibronectin and immunoglobulin G \(^{49}\), as well as the invasion of epithelial cells \(^{50}\). In addition, the \textit{pls} gene appears to mediate adhesion to cellular lipids and glycolipids and to promote bacterial cell-cell interactions \(^{51}\). The \textit{S. epidermidis} \textit{aap} gene (accumulation-associated protein) is very similar to \textit{pls} (36.1\% identical and 62.8\% similar) in amino acid sequence \(^{52}\). Josefsson and co-workers have reported that \textit{pls} is a virulence factor for septic arthritis and sepsis in a mouse model \(^{45}\). Interestingly, the \textit{pls} gene is located in the staphylococcal cassette chromosome \textit{mec}, which contains the \textit{mecA} gene that causes resistance to methicillin. The \textit{pls} gene is associated with SCC\textit{mec} type I MRSA \(^{7}\). However, it has also been detected in SCC\textit{mec} type II, SCC\textit{mec} type III \(^{7,53}\) and SCC\textit{mec} type IV \(^{54}\).

Another \textit{S. aureus} surface protein, staphylococcal protein A (Spa) is one of the main surface proteins in \textit{S. aureus} \(^{55}\), and it is encoded by the \textit{spa} gene. It has been suggested that Protein A is anti-phagocytic due to the way it binds the Fc fragment of IgG from several mammalian species \(^{56}\). Many regulators in a complex network are responsible for the expression of the \textit{spa} gene \(^{57-59}\). The first identified regulatory locus was the \textit{agr} gene, a repressor of \textit{spa} transcription \(^{59}\). The effector molecule of the \textit{agr}-dependent regulation is RNAIII, and in response to the accumulation of the auto-inducing peptide, AIP, it is synthesised at the end of the exponential phase of growth \(^{57}\). Sequencing the staphylococcal protein A, \textit{spa} gene, can be used as a typing method for MRSA strains.

As an example of invasins/toxins, the PVL leukotoxin was first described by Panton and Valentine in 1932 \(^{60}\). \textit{pvl} genes encode a bicomponent pore-forming leukotoxin. Each leukotoxin is composed of class S protein (lukS-PV) and class F protein (lukF-PV). PLV causes lytic pores in the cell membranes of neutrophils, causing leukocyte destruction and the release of chemotactic factors that result in a massive inflammatory response \(^{61}\). So far, 11 leukotoxin proteins have been recognised \(^{62}\). \textit{pvl}-positive \textit{S. aureus} are usually associated with necrotising pyogenic cutaneous infections (abscesses, furuncles) and infrequently with cellulitis or tissue necrosis \(^{63}\). However, it has been noticed that many \textit{S. aureus} isolates from humans suffering from septic arthritis, bacteraemia \(^{64}\) and necrotising pneumonia \(^{65-67}\) are \textit{pvl}-positive.
Most patients developing necrotising pneumonia have no history of skin infection but commonly have a preceding 'flu-like' illness. Both MSSA and MRSA can possess pvl genes. Community-acquired MRSA (CA-MRSA) possessing pvl genes has been shown to cause severe acute haematogenous osteomyelitis in children, and the incidence of hospital-acquired MRSA (HA-MRSA) and CA-MRSA possessing pvl genes is increasing.

Apart from the above mentioned virulence factors, biofilm formation is nowadays considered the most important virulence determinant of CNS. Polysaccharide production by CNS is related to their ability to adhere to biomaterials. Polysaccharide synthesis is controlled genetically by icaA and icaD, which encode an N-acetylglucosaminyl transferase enzyme that catalyses the synthesis of the capsular polysaccharide β-1,6-glucosamine glycan from N-acetylglucosamine. In addition, it has been proposed that the genes gehC and gehSE coding for lipases from S. epidermidis are involved in skin colonisation. However, CNS is normally less virulent than S. aureus and express fewer virulence factors.

2.2 Clinical significance of staphylococci

2.2.1 Carriage

Colonisation means the presence of viable bacteria in or on a host but without any clear clinical expression. In general, the internal tissues, for example, blood, brain, heart, muscle etc., are normally free of microorganisms. Regardless, the surface tissues, skin and mucous membranes, become readily colonised by various microbial species due to being continuously in contact with environmental organisms. Staphylococci are widely distributed in nature and can be isolated from humans, animals and food products. S. aureus can colonise the skin and mucosal surfaces of humans. The nose is the most common carriage site for S. aureus but other carriage sites like the pharynx and perineum, axillae, gastrointestinal tract and vagina, have been described. In addition, S. aureus, S. epidermidis and S. haemolyticus share the same habits and may permanently or transiently colonise the anterior nares and further regions of skin and mucous membranes which may act as sources of bacteremia and other infections. These species can also survive on innate environments, such as medical devices and medical equipment in intensive care unit (ICU) surroundings, for weeks to months. S. hominis is often
isolated from the axillae, head and extremities. *S. capitis* is often isolated from the head and arms. *S. simulans*, *S. xylosus*, *S. cohnii*, *S. saprophyticus* and *S. warneri* have occasionally been isolated from the skin. Nasal carriage of *S. aureus* has often been studied using a cross-sectional (i.e. a group of people are examined on one occasion) design with a single nasal culture to classify an individual as a carrier or not. Longitudinal studies (i.e. chosen individuals are sampled frequently over a period) discriminate at least three *S. aureus* nasal carriage patterns, which can be described in healthy individuals: persistent carriage, intermittent carriage and non-carriage. This approach has shown that about 20% of individuals are persistent *S. aureus* nasal carriers, approximately 30% are intermittent carriers, and about 50% are non-carriers. Children have higher persistent carriage rates than adults. There seems to be a transition pattern from persistent carriage to intermittent or non-carriage states during adolescence. However, carriage of staphylococci has been identified as a risk factor for development of infections in various settings: in hospitalised patients, in patients after surgery, in patients receiving continuous ambulatory peritoneal dialysis and in patients receiving hemodialysis.

2.2.2 Staphylococcal infections

An infection means successful multiplication of bacteria on or within a host, leading to an infectious disease when signs and symptoms result from damage or altered physiology associated with an infection. *S. aureus* is a common cause of infection in both hospital and community settings. More than 80% of all suppurative infections are caused by staphylococi. *S. aureus* causes diseases ranging from mild infection to very serious, even life-threatening, conditions. Most often it causes skin infections, including folliculitis, furuncles, impetigo and subcutaneous abscesses. It can also be responsible for scalded skin syndrome, soft-tissue infections like pyomyositis, septic bursitis, septic arthritis, bacteraemia, toxic shock syndrome, endocarditis, osteomyelitis, pneumonia and food poisoning.

In the last two decades, CNS have also emerged as significant pathogens especially in immunocompromised patients, premature newborns and patients with implanted biomaterials. The most frequent CNS species associated with human infections is *S. epidermidis*, particularly in association with intravascular catheters. It is the predominant agent of...
nosocomial bacteremia, prosthetic-valve endocarditis, surgical wound infections, central nervous system shunt infections, intravascular catheter-related infections, peritoneal dialysis-related infections, and infections of prosthetic joints. The second most frequently encountered CNS species is \emph{S. haemolyticus}, and it is remarkable for its highly antibiotic-resistant phenotype. It has been implicated in native-valve endocarditis, septicemia, peritonitis, wound, bone and joint infections. Other CNS species are involved in a variety of infections; \emph{S. saprophyticus} causes urinary tract infections, especially in women106, and \emph{S. sciuri} associated with human infections (e.g. boils, wound infections and endocarditis) have been reported107–109. It may also be the main source of the \emph{mecA} gene110. \emph{S. lugdunensis} has been implicated in arthritis, catheter infections and prosthetic joint infections111,112. Osteomyelitis caused by \emph{S. schleiferi} and \emph{S. caprae} associated with bone and joint infections have been reported113–116. \emph{S. hominis}, \emph{S. warneri}, \emph{S. capitis}, \emph{S. simulans}, \emph{S. xylosus} and \emph{S. cohnii}, are significant opportunistic pathogens102. CNS strains are commonly multi-resistant.

2.2.3 Epidemiology of staphylococcal infections

The word epidemiology is derived from the Greek words “epi” (on or upon), “demos” (people or population), and “logos” (word or reason)117. Thus epidemiology is the study of the reasons, incidences and patterns of disease in different groups of people. The incidence of disease is the rate at which new cases occur in a population during a specified period. Epidemiological information is used for planning and evaluating strategies to prevent morbidity and to guide the management of patients who have fallen ill (http://bmj.com). Every year in the United States, about 400,000 hospital patients are infected by \emph{S. aureus}, around 100,000 of these die from complications due to their infections (CDC; http://www.cdc.gov/ncidod/dhqp/ar_mrsa.html). The European Prevalence of Infection in Intensive Care study (EPIC) conducted in 1992 found that 30\% of all nosocomial infections were attributable to \emph{S. aureus} and 19\% to CNS118.

In Finland, around 3–5\% of hospital patients develop a hospital-acquired infection which leads to about 500 deaths each year. In the hospital infection surveillance programme SIRO, \emph{S. aureus} was in blood culture positive hospital infections (11\%) and surgical site infections (18\%) the second most common microbe in 1999–2003. The number of \emph{S. aureus}
findings from blood increased by nearly 70% from 1995 to 2004 (from 12 to 20 cases per 100,000 population) http://www.ktl.fi/hif/hif.pdf119.

Most MRSA infections originated in hospitals and long-term care facilities120, 121. In the late 1970s and early 1980s, MRSA became endemic in hospitals worldwide. These infections are called hospital-associated MRSA (HA–MRSA) to differentiate them from infections caused by strains of \textit{S. aureus} that develop in community settings. Community-acquired MRSA (CA-MRSA) infections were documented in the mid-1990s, occurring in individuals who have no previous risk factors for MRSA infections, such as exposure to hospital 72, 122, 123. Since then, the rates of MRSA infections in hospitals and the community have increased124–128. The incidence of methicillin-resistance among nosocomial isolates of \textit{S. aureus} is, however, very high in some countries reaching even 70%. Along with the other Nordic countries, Finland has been a low-incidence MRSA country for a long time. However, within the last ten years both the incidence rates and the diversity of circulating MRSA strains have increased. The yearly number of new MRSA cases was 89 in 1995 and had climbed as high as 1741 in 2008 (Figure 2) (http://www3.ktl.fi/stat/). In Finland, methicillin-resistance rates in CNS vary between 70% and 80129, and similar high rates of resistance are also reported from the United States, Canada and Latin America130.

![Figure 2. The number of new MRSA cases in Finland 1995 to 2008](http://www3.ktl.fi/stat/)

*MRSA cases= laboratory notification including both asymptomatic carriers and cases with clinical disease.
2.3 Genomes of staphylococci

The *staphylococcus* genome consists of a single circular chromosome. The size of this circular chromosome varies from 2.4 to 3.07 million bp of DNA. The number of genes is about 2900 plus a collection of other genetic elements: plasmids, mobile elements, prophages and other variable elements. Kuroda and coworkers\(^\text{131}\) completed the first whole genome sequence of two *S. aureus* strains in 2001. They used random shotgun sequencing to determine the genome sequences of MRSA strain N315 and VRSA strain Mu50. They found an elaborate combination of genes, many apparently acquired by horizontal gene transfer (HGT), indicating that these bacteria have a remarkable ability to acquire potentially useful genes from a variety of organisms. Eight genomic islands were identified on staphylococci. Seven of them are called pathogenicity islands that carry virulence genes\(^9, 123, 132–134\). The eighth one is the SCC\(_{mec}\) which carries antibiotic resistance genes.

To date, 17 strains of *S. aureus* have been completely sequenced: Mu50, N315\(^\text{131}\), MW2\(^\text{132}\), NCTC8325\(^\text{135, 136}\), MRSA 252, MSSA476\(^\text{137}\), COL\(^\text{133}\), USA300 (FPR3757)\(^\text{138}\), USA300 TCH1516\(^\text{139}\), RF122\(^\text{140}\), Strain Newman\(^\text{141}\), MU3\(^\text{142}\), Strain 04–02981\(^\text{143}\), ED98\(^\text{144}\), TW20 (0582)\(^\text{145}\), HJ1 and HJ9\(^\text{146}\). The whole genome of two strains of *S epidermidis*; RP62A and ATCC12228\(^\text{133}\), and one strain each of *S. haemolyticus* (JCSC1435)\(^\text{147}\), *S. saprophyticus* ATCC1516\(^\text{148}\), *S. carnosus* TM300\(^\text{149}\) and *S. Lugdunensis* HKU09-01\(^\text{150}\) have been completely sequenced to date (http://www.cbs.dtu.dk/services/GenomeAtlas/).

2.4 Antimicrobial agents

Antimicrobial agents, also known as antibiotics, are chemical compounds produced by microorganisms or are chemically synthesized. They are selectively toxic for microorganisms without causing the host any significant damage. The anti-microbial agents were ushered in with the accidental discovery of penicillin by Alexander Fleming in 1928; he noticed that growth of staphylococcal colonies was disrupted when growing near mould contaminating the agar plate. The year after, he published a paper describing this mould as *Penicillium notatum* and termed the active compound of it as penicillin\(^\text{151}\), although it took over ten years before mass production of penicillin was achieved.
2.4.1 Modes of action and classification of antimicrobial agents

According to their mode of action antimicrobial agents can be divided into two major types: bactericidal agents which kill microorganisms directly, or bacteriostatic ones which inhibit growth of bacteria.

Antimicrobial agents obstruct the life cycle of bacteria in many ways (Table 1); by inhibiting cell wall synthesis, by inhibiting protein synthesis, or by inhibiting metabolic pathways. Antimicrobial agents are classified as being either narrow-spectrum (effective mainly against one or very few types of microorganism) or broad-spectrum (effective against several types of microorganism). The narrow-spectrum agents include penicillin G, glycopeptides, macrolides, nitrofurantoin, metronidazole, aztreonam, nalidixic acid, and phosphomycin. Broad-spectrum agents include the carbapenems, cephalosporins, β-lactam and β-lactam inhibitor combinations, and the fluoroquinolones. The distinction between broad and narrow is not always clear, for example tetracycline and chloramphenicol are both usually classified as broad-spectrum agents, but the development of resistance to these drugs has imposed significant limitations on their spectrum of activity, thereby altering their precise classification (Table 1).

Table 1. Classification of antimicrobial agents based on the mechanism of action (adapted from)

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams (penicillins) and semisynthetic β-lactams (methicillin, nafcillin, oxacillin), cephalosporins, imipenem, aztreonam, vancomycin, bacitracin</td>
<td>Inhibition of cell wall synthesis</td>
</tr>
<tr>
<td>Chloramphenicol, clindamycin, and erythromycin aminoglycosides and tetracyclines</td>
<td>Inhibition of protein synthesis</td>
</tr>
<tr>
<td>Quinolones and ciprofloxacin rifampicin</td>
<td>Inhibition of nucleic acid synthesis</td>
</tr>
<tr>
<td>Clavulanic acid (often added to a β-lactam amoxicillin)</td>
<td>Inhibits bacterial β-lactamases</td>
</tr>
<tr>
<td>Growth factor analogs (sulfanilamide, sulfisoxazole acetyl, trimethoprim)</td>
<td>Inhibits folic acid metabolism (anti-folate)</td>
</tr>
<tr>
<td>Polymyxin</td>
<td>Damages cytoplasmic membranes</td>
</tr>
</tbody>
</table>
2.4.2 Mechanisms of antibiotic resistance

One of the most significant events in clinical microbiology since the discovery of the antimicrobial agents has been the emergence of antimicrobial resistance in common pathogens, such as staphylococci, enterococci and gram-negative rods like *Klebsiella pneumoniae*, and *Pseudomonas* spp. Bacterial resistance may result in treatment failure, which can have serious consequences, especially in critically ill patients.

Bacteria have evolved many strategies to resist the action of antibiotics. Bacteria may be intrinsically resistant to certain antibiotics, for example Gram-negative bacteria and penicillin, or to more than one class of antimicrobial agents, or they may acquire resistance by mutation or via acquisition of resistance genes from other bacteria. Acquired resistance genes may allow bacteria to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the anti-microbial target site, or to produce an alternative metabolic pathway that bypasses the action of the drug.

2.4.3 β-lactam agents and resistance to β-lactams

The original group of β-lactam agents contains the penicillins. β-lactam agents are named after their characteristic ring structure (β-lactam ring). At present, β-lactams remain the most widely used antibiotics due to their comparatively high effectiveness, low cost, ease of delivery and minimal side effects. The targets of β-lactams in staphylococci are the four native PBPs which are enzymes involved in the synthesis of the cell wall. β-lactams can be inactivated by three primary resistance mechanisms.

1. By β-lactamases, enzymes produced by a large group of both gram-positive (e.g. staphylococci) and gram-negative bacteria, which inactivate β-lactams by hydrolysing the β-lactam ring.
2. By acquisition of low affinity PBP2a and by alteration of the native target of the antibiotic (e.g. staphylococci).
3. By prevention of access of the antibiotic to the target by way of altered permeability or forced efflux (e.g. *Pseudomonas*).

Genetically both mechanisms 1 and 2 are related to each other. They can also co-exist in the same cell and influence each other’s expression.
2.5 Horizontal gene transfer (HGT)

Two types of gene transfer from one organism to another have been recognised; vertical and horizontal. Vertical gene transfer occurs between parents and offspring and HGT, also called lateral transfer, is a process in which a microbe can acquire genes from other microbes of the same species, or from different species, or even from different genus than that of the recipient. The significance of HGT for bacterial evolution was not recognised until the 1950s, when multidrug resistance patterns emerged on a worldwide scale\(^{165}\). Before the start of the genomics era, only a handful of horizontal gene transfer events were reported in the literature\(^{166-169}\). Currently, genomic sequencing is providing increasing evidence of extensive exchange of chromosomal genes. Horizontal gene transfer is now considered a major mechanism involved in bacterial evolution and responsible for the dissemination of numerous antimicrobial resistance determinants throughout different bacterial species. It is one of the reasons why antibiotic resistance genes spread so quickly\(^{170}\).

2.5.1 Mechanisms of horizontal gene transfer

Theoretically, every organism is potentially capable of taking up DNA. Three mechanisms of gene transfer in bacteria have been recognised\(^{171}\):

(i) Conjugation (mating) has been well studied, especially in *E. coli*. Conjugation requires cell to cell contact, and is a process where plasmids or transposons transfer from donor to recipient cells\(^{172}\). Conjugation can occur between distantly related bacteria or even between different domains (between bacteria and plants, between bacteria and yeast or even between bacteria and mammalian cells)\(^{173-175}\). The exogenous genetic material can be integrated into the recipient genome through genetic recombination (Figure 3).

(ii) Transformation involves the uptake and incorporation of naked DNA, and it was first observed in *Streptococcus pneumoniae* in 1944 by Oswald Avery. The transformation of resistance genes in *Streptococcus spp.*, *Bacillus subtilis* and *Neisseria* species have served as good models for studying interspecies transformational events\(^{176,177}\).
Transduction whereby the host DNA is encapsulated into a bacteriophage which acts as the vector for its injection into a recipient cell178. Transduction is an important mechanism of genetic transfer among antimicrobial resistant bacteria. However, transfer of virulence factors and pathogenicity islands is even more common than transfer of resistance genes. One of the resistant pathogens most affected by transduction is MRSA179.

2.5.2 Mobile genes

HGT between bacteria in the environment is one of the mechanisms for the generation of genetic diversity180. The mobile genetic elements play a primary role in the development and dissemination of antibiotic-resistance genes and allow bacterial populations to adapt rapidly to strong selection pressure179, 181. Elements involved in dissemination of resistance determinants among bacteria are numerous, and novel elements are still being discovered. The mobile genetic elements in bacteria consist of viruses, plasmids and transposable genetic elements (insertion sequences, IS, transposons and composite transposons). They are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination132–134, 137.

Plasmids are extrachromosomal genetic elements that are able to replicate independently of the host chromosome and are found in many bacteria and some yeasts, but they are not vital for growth. The copy number of plasmid in a cell remains constant from generation to generation182. Conjugative plasmids are considered self-transmissible. Plasmids frequently harbour antibiotic resistance and virulence genes. Many plasmids contain a large number of mobile genetic elements, such as IS elements, transposons, integrons and conjugative transposons183, 184. Most of the staphylococci carry one or more plasmids but there are some \textit{S. aureus} strains that carry none185.

Insertion sequences (ISs) are the simplest transposable elements and capable of inserting at multiple sites in a target molecule. The majority of ISs show short terminal inverted-repeat sequences (IR) of between 10 and 40 bp. Also on insertion, most ISs generate short directly repeated sequences (DRs) of the target DNA flanking the IS.
Horizontal Transfer of Mobile Genetic Element (SCC_{mec}) between Staphylococcal Species

1. **Conjugation**
 - **Donor cell**
 - Plasmid
 - A
 - B
 - C
 - **Recipient cell**
 - A
 - B
 - C
 - **Conjugation pilus**
 - Direct transfer of DNA fragment \(b \)
 - Recombination

2. **Transformation**
 - **Donor cell**
 - Plasmid
 - A
 - B
 - C
 - **Recipient cell**
 - A
 - B
 - C
 - **Cell lysis**
 - Take up DNA fragment \(b \)
 - Recombination

3. **Transduction**
 - **Donor cell**
 - Plasmid
 - A
 - B
 - C
 - **Bacteriophage**
 - Infection by bacteriophage
 - Abnormal phage (containing fragment DNA \(b \))
 - Phage injects fragment DNA \(b \)
 - Recombination

Figure 3. Diagram of different mechanisms for horizontal gene transfer. Adapted from (http://fig.cox.miami.edu/Faculty/Dana/bacfun.jpg).
The transposons (jumping genes) are mobile genetic elements, flanked by a pair of identical ISs, and can insert themselves within a structural gene. They may cause mutations or increase (or decrease) the amount of DNA in the genome. They are capable of jumping between different positions in the chromosome or between chromosomes and plasmids (e.g. Tn5801, is a site-specific transposon that encodes resistance to tetracycline in the MRSA strain Mu50). A lot of HGT has occurred during the evolution, therefore, it is even hard to clearly determine which organism is the donor and which one is the recipient in each case.

2.5.3 Evidence of horizontal gene transfer

The old general conception has held that HGT is rare, especially between distantly related organisms. The modern era of genomics has revealed increasingly numerous claims that HGT is frequent186–189. The first evidence that HGT might occur was the recognition that capsule specific genes could be transferred between pneumococci in infected mice190. HGT is most common among bacteria, especially those closely related to each other, occurring by all three mechanisms described above. Approximately 18% of the E. coli genome (about 750 genes) has been gained through HGT between two well-known and strongly related bacteria, E. coli and Salmonella enterica187.

In the genus Staphylococcus, prophage-mediated conjugation is one of the most common mechanisms of genetic transfer. In this conjugation the presence of bacteriophages can increase the adhesiveness of the bacterial cell surface and therefore help in the conjugative transfer of genetic materials between two organisms191. Broad-host range conjugative plasmids with aminoglycoside resistance have been shown to transfer from streptococci to staphylococci192. The conjugative transposon harboring tetracycline resistance determinant (tetM) is transmissible between S. aureus and Clostridia9. Transposons (Tn4001) are found on the chromosome in staphylococci193, and transposons closely related to it are found in enterococci194 and streptococci195.

In 1992, it was discovered for the first time that Enterococcus faecalis is able to transfer genes of vancomycin resistance to S. aureus. The transfer of the transposon Tn1546 (vanA) conferring vancomycin resistance from E. faecalis to a clinical isolate of S. aureus was reported196. Both E. faecalis and S. aureus are common in hospital settings and face selective pressure to survive an attack by vancomycin. Conjugative mobilisation and
a self-transmissible plasmid transfer between staphylococcal species have been reported in many studies197–203.

2.5.4 Significance of horizontal gene transfer

Horizontal gene transfer allows us to understand how asexual bacteria are able to exchange genetic material and create genetic diversity amongst their populations. Many studies propose that adaptation to the external environment and horizontal gene transfer among strains play important roles in the evolution of pathogens40, 204, 205. There is strong evidence that pathogenic bacteria can develop multi-drug resistance simply by acquiring antibiotic resistance genes from other bacteria196, 206. Recently, it has become increasingly evident that horizontal gene transfer is central to microbial activities that influence both our health and the environment.

2.6 Resistance mechanisms in bacteria in the 'pre-antibiotic' era

Bacteria have been present for billions of years, and they have developed exceptional defense mechanisms against each other. These mechanisms are used by bacteria against antibiotics.

The phenomenon of antibiotic resistance in some cases is innate to the microbe. Resistance mechanisms have been shown to be present before the introduction of antibiotics and they, obviously, arose by mutations of microbial genes or acquisition of genes from exogenous sources165, 179, 207. These resistance genes must have precursors in environmental microbes. The precursors of known antibiotic-resistance genes can be found in microbes living in very different environments and in various microbial groups.

Recently, shotgun sequencing of microbial genomes has discovered orthologues of known resistance genes in many pathogenic and nonpathogenic bacteria. These genes are closely related to the antibiotic-resistance genes. Although our understanding of the natural sources of resistance genes is increasing, their actual biochemical functions are still unknown. Most antibiotics are natural microbial products that are supposed to act as competitive or signalling agents in the microbial community. Several clinically important pathogens are ‘naturally’ resistant to antibiotics208. For example, \textit{Pseudomonas aeruginosa} shows intrinsic resistance to many antibiotics. \textit{Pseudomonads} are denizens of many hostile environments and can, proba-
bly, survive these conditions because of their ability to pump out various toxic organic compounds, including antibiotics209.

2.7 Methicillin-resistance in staphylococci

In 1950, about ten years after the mass-production of penicillin, penicillinase-producing staphylococci became a therapeutic problem, especially in hospitals where numerous outbreaks were identified. Methicillin was introduced in 1959 to fight the growing problem of penicillin resistance. Immediately upon the introduction of methicillin into clinical practice, the first methicillin-resistant strains of staphylococci were identified, and the first cases of MRSA210 and MRSE were published211.

2.7.1 Evolution of MRSA

MRSA is born when a MSSA gains a genomic island known as SCC\textsubscript{mec}. Two hypotheses have been proposed to explain the evolutionary origin of MRSA strains. According to the clone hypothesis, MRSA isolates are descendants of a single original clone212, 213. Consistent with the second hypothesis, horizontal transfer of genes is a common evolutionary mechanism in \textit{S. aureus}. The current whole genome sequencing of \textit{S. aureus} strongly supports the latter proposal that MRSA strains have evolved a number of times by means of horizontal transfer of \textit{mecA} into phylogenetically distinct MSSA precursor strains214. However, the mechanisms responsible for the possible horizontal transfer of \textit{mecA} between staphylococcal species or between different gram-positive species are unknown. In addition, the frequency with which SCC\textsubscript{mec} is acquired is not completely known.

2.7.1.1 The origin of the \textit{mecA} gene

The \textit{mecA} gene is highly preserved among staphylococcal species5, 215, 216. The \textit{mecA} gene is not native to \textit{S. aureus} but acquired from an unknown donor by a HGT mechanism5, 43. It may have originated in the species \textit{S. sciuri}, possibly an ancestral species and later transferred to other species (\textit{S. aureus} and \textit{S. epidermidis})109, 110. To identify the source of the \textit{mecA} gene, Cout and coworkers tested more than 200 isolates of different staphylococcal species that would react with a DNA probe internal to the \textit{mecA} of \textit{S. aureus}. A homologue of the gene \textit{mecA aureus} was shown to be ubiquitous in isolates of the animal species \textit{S. sciuri}. The \textit{mecA} homologue identified in \textit{S. sciuri} showed 79.5\% DNA sequence similarity to the \textit{mecA} gene of a
MRSA strain. However, the mecA gene of S. sciuri was not flanked with the regulatory genes and majority of the S. sciuri strains tested were susceptible to methicillin. Methicillin-resistant S. sciuri carry copies of both mecA sciuri and mecA aureus. The mecA gene may thus be a native gene in the S. sciuri, and the mecA of S. sciuri possibly is the originator of the mecA of S. aureus. Based on epidemiological and genetic evidence, it has been proposed that S. sciuri phpD might represent the evolutionary precursor of the S. aureus mecA gene. The protein product of phpD later became known as PBP4, one of the six PBPs detected in S. sciuri. The S. sciuri PBP4 share several biochemical properties with S. aureus PBP2A.

Recently, the whole genome of a methicillin-resistant Macrococcus caseolyticus strain JCSC5402 was completely sequenced, and it was found that M. caseolyticus harbours various antibiotic resistance determinants including those mediating resistance against β-lactams, aminoglycosides and macrolides. Additionally, it was revealed that one of the eight plasmids of M. caseolyticus harbours a mecA gene homologue, designated mecAm, encoding a penicillin-binding protein similar to PBP2a of MRSA, with 72% amino acid sequence identity to mecA of S. aureus. The mecAm gene is flanked by β-lactam regulator genes, similar to blaI-blaR1 (designated mecIm-mecR1m), and a β-lactamase gene similar to blaZ (blaZm). In 2010, Tsubakishita and co-workers revealed a new SCCmec-like element in M. caseolyticus strain JCSC7096. This may be the ancestral form of the methicillin-resistance determinant of MRSA. However, the evolutionary origin of mecA and the formation of the mec element have remained largely a matter of speculation.

2.7.2 The genetic basis of methicillin resistance

As stated above, there are three mechanisms by which staphylococci become resistant to methicillin, one of them being the presence of an acquired penicillin-binding protein (PBP2a/PBP2’). Most clinical isolates of staphylococci are characterised by production of PBP2a. Both susceptible and resistant strains of S. aureus produce four major PBPs: 1, 2, 3 and 4. PBPs are membrane bound DD-peptidases that have evolved from serine proteases, and their biochemical activity is mechanistically similar to that of the serine proteases. These enzymes catalyze the transpeptidation reaction that cross-links the peptidoglycan of the bacterial cell wall. PBP2a is a unique transpeptidase with low affinity for β-lactams.
Table 2. List and characteristics of strains from which the SCC\textit{mec} has been sequenced. Strains with whole genome sequence are marked with *.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Country</th>
<th>Year of isolation</th>
<th>Size of genome (bp)</th>
<th>No of prophages</th>
<th>No of IS</th>
<th>No of transposons/plasmids</th>
<th>SCC\textit{mec} type</th>
<th>GenBank accession number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{S. aureus}</td>
<td>N315*</td>
<td>Japan</td>
<td>1981</td>
<td>2,839,469</td>
<td>1</td>
<td>20</td>
<td>5/1</td>
<td>II</td>
<td>D86934</td>
<td>227</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>85/2082</td>
<td>New Zealand</td>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>AB38513</td>
<td>7</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>NCTC10442</td>
<td>England</td>
<td>1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>AB33763</td>
<td></td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>Mu50*</td>
<td>Japan</td>
<td>1996</td>
<td>2,903,636</td>
<td>2</td>
<td>23</td>
<td>3/1</td>
<td>II</td>
<td>BA000017</td>
<td>113</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>HDE288</td>
<td>Portugal</td>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VI</td>
<td>AF411935</td>
<td>232</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>MW2*</td>
<td>USA</td>
<td>1998</td>
<td>2,820,462</td>
<td>2</td>
<td>6</td>
<td>0/1</td>
<td>IVa</td>
<td>BA000033</td>
<td>132</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>CA05</td>
<td>USA</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IV.1(IVa)</td>
<td>AB063172</td>
<td>11</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>8/6-3P</td>
<td>USA</td>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IV.4</td>
<td>AB063173</td>
<td>11</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>WIS</td>
<td>Australia</td>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>AB121219</td>
<td>8</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>MRSA252*</td>
<td>USA</td>
<td>1997</td>
<td>2,902,619</td>
<td>2</td>
<td>22</td>
<td>3/1</td>
<td>II</td>
<td>BX571856</td>
<td>137</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>AR13.1/330.2</td>
<td>Ireland</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>II.E</td>
<td>AJ810120</td>
<td>233</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>AR43/3330.1</td>
<td>Ireland</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IV.3</td>
<td>AJ8101121</td>
<td>233</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>M03-68</td>
<td>Korea</td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IVg</td>
<td>DQ106887</td>
<td>234</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>JCSC3063</td>
<td>Japan</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IIb</td>
<td>AB127982</td>
<td>235</td>
</tr>
<tr>
<td>\textit{S. aureus}</td>
<td>JSGH17</td>
<td>"Taiwan"</td>
<td>1997-2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>AJ894415, AJ894416</td>
<td>236</td>
</tr>
<tr>
<td>Organism</td>
<td>Strain</td>
<td>Country</td>
<td>Year</td>
<td>Number</td>
<td>Stage</td>
<td>Stage 1</td>
<td>Stage 2</td>
<td>Stage 3</td>
<td>Stage 4</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>S. aureus</td>
<td>COL*</td>
<td>UK</td>
<td>1960</td>
<td>2,813,862</td>
<td>1</td>
<td>6</td>
<td>0/1</td>
<td>I</td>
<td>CP000046</td>
<td>133</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>RP62A*</td>
<td>USA</td>
<td>1979-1980</td>
<td>2,643,840</td>
<td>1</td>
<td>23</td>
<td>4/1</td>
<td>II</td>
<td>CP000029</td>
<td>133</td>
</tr>
<tr>
<td>S. aureus</td>
<td>USA300 * (FPR3757)</td>
<td>USA</td>
<td>2000</td>
<td>2,917,469</td>
<td>3</td>
<td>6</td>
<td>0/3</td>
<td>IV</td>
<td>NC-007793</td>
<td>138</td>
</tr>
<tr>
<td>S. aureus</td>
<td>ZH47</td>
<td>Switzerland</td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCCmec2147</td>
<td>AM292304</td>
</tr>
<tr>
<td>S. aureus</td>
<td>JH1*</td>
<td>USA</td>
<td>2003</td>
<td>2,936,936</td>
<td>/1</td>
<td></td>
<td></td>
<td>II</td>
<td>NC009632</td>
<td>146</td>
</tr>
<tr>
<td>S. aureus</td>
<td>JH9 * (VISA)</td>
<td>USA</td>
<td>2003</td>
<td>2,937,129</td>
<td>/1</td>
<td></td>
<td></td>
<td>II</td>
<td>NC009487</td>
<td>146</td>
</tr>
<tr>
<td>S. aureus</td>
<td>PM1</td>
<td>Taiwan</td>
<td>2000-2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VII (V7)</td>
<td>AB462393</td>
<td>13</td>
</tr>
<tr>
<td>S. aureus</td>
<td>MU3* (VISA)</td>
<td>Japan</td>
<td>1997</td>
<td>2,880,168</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td>AP009324</td>
<td>142</td>
</tr>
<tr>
<td>S. aureus</td>
<td>V14</td>
<td>India</td>
<td></td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td>AB425427</td>
<td>238</td>
</tr>
<tr>
<td>S. aureus</td>
<td>JCSC6826</td>
<td>Japan</td>
<td>2004</td>
<td></td>
<td>Pseudo-type II.5</td>
<td></td>
<td></td>
<td>AB435014</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td>04-02981*</td>
<td>Germany</td>
<td>2004</td>
<td>2,821,452</td>
<td>2</td>
<td></td>
<td></td>
<td>II, dru deletion</td>
<td>CP001844</td>
<td>143</td>
</tr>
<tr>
<td>S. aureus</td>
<td>TW20(0582)*</td>
<td>UK</td>
<td>2003</td>
<td>3,075,806</td>
<td>3</td>
<td></td>
<td></td>
<td>5/2</td>
<td>III</td>
<td>FN433596</td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td>JCSC1435*</td>
<td>Japan</td>
<td>2000</td>
<td>2,697,861</td>
<td>2</td>
<td>82</td>
<td>2/3</td>
<td>Novel type ccrA1/ccrB3 & class A</td>
<td>AP006716</td>
<td>147</td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>TSU33</td>
<td>Japan</td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB353724</td>
<td>240</td>
</tr>
</tbody>
</table>
that is found only in methicillin-resistant staphylococci and encoded by the meca gene, which is located within a large chromosomal region initially designated as mec DNA. The first mecDNA region was sequenced by Ito et al.227 and the region was called a staphylococcal cassette chromosome mec (SCCmec)228. Since then, several SCCmec elements of MRSA strains have been sequenced, and more will be coming (Table 2).

Other genes independent of SCCmec have influenced methicillin resistance, such as the bla regulatory genes (blaRI and blal) and factors essential for methicillin (fem) or auxiliary factors (aux). To date, over 20 fem or aux factors have been recognised39,162,229,230. These factors are housekeeping genes and they are native in the genome of S. aureus. The majority of these genes are of unknown function but some of them encode the protein kinases and ABC transporters, possibly involved in signal transduction231 or are membrane-associated proteins. None of these factors have been shown to influence PBP2a production.

2.7.2.1 Staphylococcal cassette chromosome mec (SCCmec)

SCCmec is one of the largest bacterial mobile elements known to date, its size ranging from 21 to 67 kbp, and it is exclusive to staphylococci9,241. The SCCmec is considered to disseminate through horizontal transmission between staphylococcal species227,228. The molecular structure of SCCmec consists of the mec gene complex, a pair of ccr-genes, and three junkyard regions (J1-J3). The J regions are located between and around the mec and ccr complexes, and contain different genes or pseudo genes. SCCmec elements are classified into types based on the characteristics of the mec and ccr complexes, and the variants of each SCCmec type are defined by differences in the J regions.

The SCCmec is integrated at a specific site in the staphylococcal chromosome (attBcc), which is located at the 3’ end of the open reading frame X (orfX). The orfX encodes for a protein with an unknown function and is located near the origin of replication, between a gene encoding a protein involved in purine synthesis (purA) and the protein A encoding gene (spa). The integrated SCCmec is bordered by a pair of 15 nucleotide direct repeats (DR-SCC and DR-B). The DR-SCC is found in the SCCmec directly next to orfX. DR-B is located at the other end of the SCCmec and is found outside the SCCmec (attB). The SCCmec is also flanked by a pair of 27 bp inverted repeats (IRscc-L and IRscc-R) located at both ends of the
SCCmec. Most of the DRscc-R is located in, and partly cover, the IR next to orfX\(^8, 10, 131, 227\).

![Schematic diagram of integration site sequence of SCC (attBSCC)](image)

Figure 4. Schematic diagram of integration site sequence of SCC (attBSCC) as described by\(^{131}\), orfX = Open Reading Frame, DR-B= Direct-repeats and IRscc= Inverted repeats.

2.7.2.1.1 The ccr gene complex

SCCmec carries specific cassette chromosome recombinase genes (ccr). The Ccr proteins belong to the invertase/resolvase family\(^7, 8, 10, 227\) and carry characteristic catalytic motifs at the N-terminal domain. The ccr genes are responsible for the mobility of the element and its chromosomal integration and excision.

Three different ccr genes have been described: ccrA, ccrB and ccrC. The ccrA and ccrB are always found together and need each other to be functional\(^7\). They share about 80% identity. The ccrC gene is composed of only one recombinase gene and is able to induce mobility by itself\(^8\). To date, five types of ccr are known in staphylococci: type1 (ccrA1 and ccrB1), type 2 (ccrA2 and ccrB2), type 3 (ccrA3 and ccrB3), type 4 (ccrA4 and ccrB4) and type 5 (ccrC).

2.7.2.1.2 The mec gene complex

The mec gene complex is composed of an IS431 (present in all mec classes) followed by the mecA gene and the regulatory genes mecl and mecR1 or their truncated versions and insertion sequences, like IS431 or IS1272. The mecA gene, which is 2,1 kb in length, is the structural gene that encodes for PBP2a, which has a low affinity for β-lactams\(^ {242, 243}\).
The regulatory genes mecI and mecRI are located upstream of mecA and transcribed in the opposite direction of the mecA gene244. The mecR1-mecI encodes the MecR1 single-transduce r with a penicillin-binding domain (PB) and a memberan–spanning domain (MS) and MecI repressor. The mecR1-mecI is structurally and functionally closely related to the β-lactamase regulatory BlaR1 and BlaI244,245.

The BlaR1 and BlaI are able to control the expression of PBP2a when the mecR1 and mecI genes are disabled246–248. The mec classes are defined by the arrangement of genes adjacent to mecA233. Six main classes of mec gene complex (A- E) and five subtype classes (A1, A.3, A.4 and B1, B2) have been described (Figure 5)7, 8, 11, 12, 227, 228, 237, 249.

The class A mec consists of IS\textsubscript{431}, intact mecA, mecR1 and mecI227. The subtype of class A, class A1, has a 166 bp deletion in mecR1 (MS). The class A.3 has an intact mecR1 gene, but 119 bp of its mecI sequence is truncated by the insertion sequence IS\textsubscript{1182} at its 3’end. The class A.4 is similar to class A.3 but IS\textsubscript{1182} is inserted within the mecI and causes a 16 bp deletion of mecI directly upstream of the inserted IS\textsubscript{1182}233.

The class B mec consists of IS\textsubscript{431}, mecA and mecR1 partially deleted (PB totally and 64 bp of MS) by insertion of a partial copy of IS\textsubscript{1272}. The mecI gene is totally deleted by insertion of IS\textsubscript{1272}228,250. The subtype class B1 consists of mecA and mecR1 with partial deletion MS by insertion of the partial copy of IS\textsubscript{1272}. Class B2 is another variant of mec B with mecR1 (MS) interrupted by Tn\textsubscript{400}237.

The class C mec consists of IS\textsubscript{431}, mecA, mecR1 (MS) and IS\textsubscript{431}; the mecI and mecR1 (PB) genes are deleted and replaced by insertion of a copy of IS\textsubscript{431}228. The subtype class C1 is different to class C2 by the direction of IS\textsubscript{431} and the size of MS part the length of which in C1 is 968 and in C2 91 bp.

The class D mec consists of IS\textsubscript{431}, mecA, mecR1 (MS). mecI and mecR1 (PB) are deleted without any insertion of an IS228.

The class E consists of IS\textsubscript{431}, mecA and mecR1 (PB). mecI and mecR1,(MS) are deleted251. The genetic structures of all classes are shown in Figure 5.
2.7.2.1.3 The junkyard regions and additional resistance genes

The regions other than \(ccr \) and \(mec \) gene complexes in \(SCCmec \) are known as the junkyard J regions. The J regions can be divided into three regions based on their location in relation to the \(ccr \) and \(mec \) complex as follows: the J1 region is located between \(ccr \) and the chromosomal region flanking \(SCCmec \) (DR-B), the J2 region is located between \(mec \) and \(ccr \), and the J3 region is located between \(mec \) and \(orfX \). Certain J regions are commonly shared among certain types of \(SCCmec \) elements, but they are not always
specific to each SCC\textit{mec} type. The difference in the J regions may be used to track the evolution and molecular epidemiology of SCC\textit{mec}9. The size difference of the SCC\textit{mec} types can be explained by the integration of various additional genetic elements in J regions of SCC\textit{mec}. These additional elements include:

\textbf{Genes encoding resistance}; Tn554 (encodes resistance to macrolides, lincosamides, streptogramin [MLS] and spectinomycin or cadmium resistance [\textit{cadDX}]), integrated plasmid pUB110 (encodes resistance to aminoglycosides), integrated plasmid p\textit{T}181 (encodes resistance to tetracycline), mercurial resistance operon (\textit{mer}), copy of Tn\textit{4001} (the resistance to aminoglycosides transposon)7 and Tn5405 carrying the genes \textit{aphA}-3 and \textit{aadE}, which encode resistance to aminoglycosides252.

Other genes not encoding resistance; \textit{kdp} encoding for a potassium transport system, \textit{pls} (plasmin-sensitive surface protein)7 \textit{hsdR} encoding an endonuclease, and the genes \textit{hsdS} and \textit{hsdM} encoding a DNA methyltransferase253.

\textbf{Five insertion sequences}, IS431, IS1272, IS1181, IS1182 and IS256, have been described in staphylococci254, 255. Briefly, IS431 is a part of the \textit{mec} gene complex which may be present as more than one copy in the same SCC\textit{mec}. It has been found to be responsible for the deletion and rearrangement of the \textit{mecA} regulatory genes, the mobility and accumulation of the resistance genes7–9, 227, 256–258, and perhaps, to a degree, the expression of the \textit{mecA}. IS431 is regarded to be involved in the integration of exogenous material in the chromosome. Tn\textit{4003} (trimethoprin resistance), \textit{mer} operon, \textit{cadDX} operon, \textit{mupA} operon (mupirocin resistance gene) and other genes are flanked by copies of IS431258, 259.

\textbf{IS1272} is a 1934 bp element consisting of two ORFs and 16 terminals IRs. A truncated copy of IS1272 (\textit{\Delta IS1272}) has been found to truncate the \textit{mecA} regulatory region260. IS1272 is seldom detected in MSSA and some MRSA only carry a single partial copy of IS1272. On the contrary, IS1272 is frequently found as multiple copies in \textit{S. haemolyticus} while in \textit{S. epidermidis} it exists as truncated IS1272250, 260, 261. The \textit{mecR1- IS1272} junction sequences of MRSA, \textit{S. haemolyticus} and \textit{S. epidermidis} are identical. It has been suggested that IS1272 is native to \textit{S. haemolyticus}7, 250, 260, 261.

IS1181 is exclusive to S. aureus even though there are some isolates (as EMRSA-16) free from it. IS1181 does not associate with any resistance genes.

IS1182 is found as multiple copies in staphylococci. Transposon Tn5405 is flanked by inverted copies of IS1182. IS1182 has been found to be related to IS1272 with 60% nucleotide similarity. IS1182 insertion into the mec complex truncates the mecI gene.

IS256 is found in chromosome and on plasmids as multiple copies. Transposon Tn4001 is flanked by inverted copies of IS256. It also plays a role in biofilm formation in S. epidermidis.

2.7.2.2 Nomenclature and types of SCCmec elements

The SCCmec types are classified based on the combination of ccr type and mec class, and further classified into subtypes according to differences in their J region DNA. There are two systems for naming SCCmec. The first is by Roman numerals (I- VIII) given to SCCmec in the order of appearance. This nomenclature has been used widely (Ito, 2003). The second naming system is described by Arabic numerals for ccr types (1, 2, 3,...) and an upper case letter for mec class (A, B,...)249. To date, eight main SCCmec types have been recognised: types I (1B), II (2A), III (3A), IV (2B), V (5C2a), VI (4B), VII (5C2b) and VIII (4A)6, 8, 9, 11–14. These types are illustrated in Figure 6. In addition to the main types, a number of sub-type SCCmec elements have been revealed.

Type I (34 kb) has ccr type 1, mec class B and the pls gene in the J1 region. It is found in a group of MRSA isolates, detected in the early 1960s. It is also found in the pandemic Iberian clone269. The subtype IA (40 kb) differs from type I by the presence of an integrated plasmid pUB110 flanked by two copies of IS431 in the J3 region.

Type II or IIa (53kb) has ccr type 2, mec class A and kdp operon in the J1 region, Tn554 in the J2 region, and integrated plasmid pUB110 flanked by two copies of IS431 in the J3 region. It has been identified in the pre-MRSA strains that were in 1982 in Japan. The subtype IIb differs from type II by the presence of a copy of IS256, and absence of kdp operon and integrated plasmid pUB110. It has been found in MRSA strains isolated from healthy Japanese children.
The other five subtypes of the SCC\textit{mec} II type (31-40 kb) have been found among the Irish MRSA strains isolated between 1971 and 2002233. In all these subtypes (IIA- IIE), the \textit{kdp} operon in the J1 region is absent, and they share the J1 region of type IVb. Subtype IIA has class A.4 \textit{mec}, type 2 \textit{ccr}, Tn554 in the J2 region and integrated plasmid pUB110 flanked by two copies of IS431 in the J3 region. IIB differs from type II only by the absence of Tn554. IIC carries class A.3 \textit{mec} and truncated Tn554. IID has a class A.4 \textit{mec}, and IIE carry a class A.3 \textit{mec}, and both lack the integrated plasmid pUB110. Recently, two subtypes (type II.5 and pseudo-type II.5) were identified239.

Type II.5 has \textit{ccrA2} and class A, and in its J1 region it does not carry the \textit{kdp} operon. Pseudo-type II.5 has \textit{ccrA2} and class B, and in its J1 region it does not carry Tn6012 \textit{kdp} operon and the Tn554.

Type III (66.9 kb) was first identified in an MRSA strain isolated in 1985 in New Zealand. Type III carries a number of antimicrobial resistance genes in its J regions. It has class A \textit{mec}, type 3 \textit{ccr} and a copy of Tn554 in the J2 region. The J3 region contains \textit{SCC}\textit{mercury} that consists of \textit{ccrC}, \textit{mer} operon and Tn554, and integrated plasmid pT118.

Type IIIA differs from type III by the presence of integrated plasmid pUB110 with its flanking IS431 in the J2 region. Type IIIB lacks \textit{SCC}\textit{mercury} and integrated plasmid pT1187, 232, 249.

The type IV to VIII SCC\textit{mec} elements are characterised by their small size (21 to 31 kbp) and lack of resistance genes other than \textit{mecA}. They are widely disseminated among CA-MRSA strains6, 9, 11, 13, 236, 270, 271.

Type IV (IVa) harbours type-2 \textit{ccr}, class B \textit{mec} and the J1 region, which is specific for IVa11. Several subtypes of type IV have been reported268. Briefly, the differences between subtypes are in their J regions. In subtype IVb, the J1 region is specific for IVb11. In subtype IVc, the J1 region is specific for IVc, and it carries Tn4001 with its flanking IS256 in the J3 region272, 273. In subtype IVd, the J1 region is specific for IVd235.

In subtype IVE, the J1 region is identical to IVc, and it has a unique left extremity sequence. In subtype IVF, the J1 region is identical to IVb, and it has a unique left extremity sequence233. Subtype IVg harbours \textit{ccr2}, \textit{mec} class B and J1 specific for IVg234 and IVA carries integrated plasmid pUB110 with its flanking IS431 in the J3 region232.
Type V harbours type-5 *ccr* (*ccrC*) and class C2a *mec*, and carries genes encoding a restriction-modification system (*hsdR, hsdS* and *hsdM*) in the J1 region. This system might play a role in the stabilisation of the element within the chromosome\(^8\). A few subtypes have been described for type V\(^274\).

Type VI harbours type-4 *ccr*, class B *mec* and a specific J1 region\(^1\).\(^2\)

Type VII (V\(_T\)) has type 5 (*ccrC2*), class C2b *mec* and *ccrC*\(^6\), \(^13\), \(^236\), \(^271\). Novel SCC\(_{mec}\) type has been identified in a Swedish CA-MRSA strain. It carries type 5 *ccr* (*ccrC*) and class C1 *mec*\(^275\), \(^276\).

Type VIII (32,126 kb) is a novel SCC\(_{mec}\) type found in a Canadian MRSA strain. It carries type 4 *ccr* and class A *mec*\(^14\).

2.7.2.3 SCC types without the *mec* complex

SCC is a site specific mobile element inserted at the same site as SCC\(_{mec}\) and may have the same function as in SCC\(_{mec}\) or no function. Numerous SCCs without the *mec* gene complex have been found in *S. aureus* and CNS.

(i) The SCC *capI* (35kb) encodes the type 1 capsular polysaccharide and contains truncated *ccrC*. It is found in *S. aureus* (NCC8325)\(^277\).

(ii) The SCC\(_{12263}\) (23kb) carries a functional type 1 *ccr* gene complex. It has been detected in a methicillin-susceptible *S. hominis* strain (GIFU12263)\(^278\).

(iii) The SCC\(_{476}\) (22.8 kb) is found in MSSA476 strain. It carries type 1 *ccr* gene complex, *far* gene encoding resistance to fusidic acid, and type I restriction modification system genes\(^137\), \(^279\).

(iv) The SCC composite island (57kb) is found in *S. epidermidis* strain (ATCC 12228). It carries type2 *ccr*, type 4 *ccr* and SCC\(_{pbp4}\)\(^273\). Recently identified GrMSSA isolate M06/0075 harbors a SCC\(_{mec}\) IID remnant that lacks part of *mecI* and totally *mecR1*, *mecA* and IS\(_{431}\)\(^280\). A similar SCC\(_{mec}\) IID has been identified also previously\(^233\).
Figure 6. Schematic structures of MRSA SCCmec elements of types I to VIII based on the findings of 6, 8, 9, 11-14. Horizontal arrows within the cassette indicate the direction of SCCmec elements. Appropriate letters (A–G) indicate the eight region loci that defined by multiplex PCR.
2.8 Tools for typing staphylococci

First, some terms closely related to the typing methods need to be clarified: a bacterial isolate can be defined as a single isolation in pure culture from a clinical specimen for which no information is available aside from its genus and species. A strain is an isolate that can be distinguished from other isolates of the same genus and species. Clones (genetically related isolates) are identical by a variety of typing methods or so similar that they are assumed to be derived from a same parent. Outbreak strains are defined as two or more isolates detected in the same place at the same time period, and they share the same or similar genotype patterns. They are presumed to be clonally related since they have common phenotypes. Epidemic strains are defined as two or more isolates in two or more places and they have the same genotype patterns, which suggest that the isolates may be derived from a common source. A sporadic strain is defined as a strain isolated from one person, and it has a unique genotype pattern. These definitions are used in this study.

Typing methods are used as tools to help determine possible sources of microbial infections and to determine the spread of bacteria. Microbial typing contributes to the understanding of the epidemiology of infection. This information is helpful for prevention and control of infectious diseases in both hospitals and communities.

In practice, typing is most valuable in outbreak investigations when it is applied to small sets of isolates that are epidemiologically related. For instance, monitoring and limiting the intra- and inter hospital spread of staphylococcal strains requires the use of rapid and accurate epidemiologic typing systems. Currently, several typing techniques have been developed for typing staphylococci. The main task of any typing method is to determine whether epidemiologically related isolates are also genetically related. Traditionally this has depended on the comparison of phenotypic characteristics, such as biotypes, serotypes, bacteriophage types and antimicrobial susceptibility testing. During the past two decades these phenotyping methods have been largely replaced by genotyping methods based on analysis of DNA or other molecules. The genotyping methods include restriction-based methods like pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD) and plasmid profiles, Southern hybridisation based methods like ribotyping and binary typing, PCR-based typing methods like mecA, nuc typing and SCCmec typing, and DNA sequencing based methods like multilocus sequence typing (MLST),...
spa sequencing typing and multiple-locus variable-number tandem-repeat typing (MLVA). The merging of molecular methods for typing MRSA has greatly helped to evaluate strain interrelationships², ²⁸⁶–²⁹¹.

The criteria for evaluation of typing techniques can be divided into two categories: performance criteria (efficacy) and convenience criteria (efficiency)²⁸¹–²⁸⁴. The performance criteria include (i) Typability, the ability of a technique to type all isolates tested by it. (ii) Reproducibility, the ability of a typing technique to give the same result on independent occasions, separated in time and/or place²⁹². (iii) Discriminatory power, the ability of a technique to give a different result to two unrelated strains sampled randomly from the population of a given species. Discriminatory power should be high for outbreak investigation to be successful. The convenience criteria evaluate the practicality of the typing technique. They include flexibility (the technique can type any pathogen by modifying the protocol), rapidity (saving time), simplicity (ease of use), and the costs of the method (costs of the necessary apparatus and material)²⁸⁴. All typing systems can be characterised in terms of typability, reproducibility, discriminatory power, flexibility, rapidity, simplicity and the expenses²⁸⁴, ²⁹⁰. Some of the most widely used staphylococcal typing methods are described briefly in this review (Table 3).

2.8.1 Phage typing

Bacteriophages or phages are viruses that are able to infect and lyse bacterial cells. The differential ability of phages to infect certain cells is based upon the availability of corresponding receptors on the cell surface for the phage to bind²⁸⁵. Different strains have a different group of receptors, leading to variable lysis profiles. Phage typing classifies bacteria based on the pattern of resistance or susceptibility to an international set of 24 phages. These phages are used at a standard dilution known as routine test dilution (RTD) and at 100x RTD²⁹³, ²⁹⁴. Phage typing has been the traditional typing method and it has been very valuable in epidemiologic investigation over the past decades²⁸⁴, ²⁹¹, ²⁹⁵. Limitations of the phage typing method include a lack of any systematic biological basis and technical difficulty²¹³, ²⁹¹.
2.8.2 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing is frequently used in the clinical microbiology laboratory. The ensuing antibiogram indicates the pattern of \textit{in vitro} resistance or susceptibility of an organism to a repertoire of antimicrobial agents296, 297. It is inexpensive and rapid compared to other conventional methods291. There are globally used guidelines for antibiogram testing provided by CLSI (http://www.clsi.org). Antimicrobial susceptibility testing often provides the first indications of an emerging outbreak, despite the fact that its discriminatory power is poor. In addition, susceptibility pattern of some isolates are variable by the time, transfer and storage285, 298. The genetic relation between isolates cannot be identified by antimicrobial susceptibility testing291.

2.8.3 Ribotyping

The most common Southern hybridisation method used is ribotyping299. Ribotyping consists of restriction endonuclease fingerprinting of ribosomal RNA (rRNA) genes visualised by Southern hybridisation with an rRNA probe. In this technique, genomic DNA is first isolated and digested with restriction enzymes and then the DNA fragments are separated in gel electrophoresis. The DNA fragments are transferred onto a nylon membrane and then hybridised with labeled DNA probes specific for 16S and 23S rRNA248, 300. It can be used for all isolates and its reproducibility is good, which makes it a suitable method for long-term studies of staphylococcal epidemiology. However, for short term studies its discriminatory power is too low291.

2.8.4 Pulsed-field gel electrophoresis

PFGE is one of the earliest molecular methods301 commonly used in the typing of human bacterial pathogens and investigation of disease outbreaks. It is an important method for short-term studies of staphylococcal epidemiology291 but not suitable for long term studies. In this technique, the bacterial chromosome is first isolated and then digested with restriction enzymes to produce pieces small enough to be resolved by pulsed electrophoresis in agarose. This digestion yields several linear molecules of bacterial chromosome that usually is circular281–283, 302-304. Genomic restriction digests of various bacterial species can be analysed by PFGE with only minor modifications in the protocol305. The PFGE method for various bacteria has been harmonised to increase and improve the epidemiological
surveillance on a worldwide scale. An example of this is the harmony project for *S. aureus*\(^{306}\) (http://www.harmony-microbe.net/).

PFGE types are determined with Bionumeric software (Applied Maths, Kortrijk, Belgium). However, PFGE is not flawless. For example, DNA degradation can occur in the gel preventing typing of some strains\(^{307}\), and also some strains can not be typed by PFGE due to DNA methylation of the restriction enzyme (Smal) recognition sites\(^{308}\). Additionally, it is time-consuming, the PFGE equipment is relatively expensive and the inter-laboratory exchange of results is difficult\(^{282}\).

2.8.5 SCC\(_{mec}\) typing

Polymerase chain reaction (PCR) is one of the most effective molecular biology techniques developed in recent decades. It was described by Saiki and coworkers\(^{309}\). In this technique, multiple copies of a target DNA segment can be produced. It relies on previous knowledge of the nucleotide sequences of the target sites. Many PCR-based methods for SCC\(_{mec}\) typing have been developed.

1. **The short- and long-range PCRs** have been developed to determine the structure of the *mec* complex and identify the different types of *ccr* gene\(^{7,270}\).
2. **A single-step multiplex PCR assay** has been developed by Oliveira and de Lencastre. The method is based on the detection of *mecA* and eight loci in SCC\(_{mec}\) region, seven loci in J regions (A, B, D, E, F, G and H) and one locus (C) in the *mec* complex (*mecI* gene). The SCC\(_{mec}\) types can be classified into I, IA, III, IIIA, IV and IVA\(^{232}\). These two methods are most often used.
3. **A multiplex PCR assay** was developed by Zhang and co-workers. The J1 region of eight SCC\(_{mec}\) elements (I, II, III, IVa–IVd and V) can be identified by this method\(^{310}\).
4. **A multiplex PCR assay** was developed by Boye *et al.* It contains four primer sets for identifying the five main SCC\(_{mec}\) types (I-V)\(^{311}\).
5. **The PCR scheme** developed by Kondo *et al.* consists of six multiplex PCRs. A multiplex PCR with primer set 1 (M-PCR 1) identifies five types of *ccr* genes, M-PCR 2 identifies class A to class C *mec*, M-PCRs 3 and 4 identify specific open reading frames in the J1 regions of type I and IV and of type II, III, and V SCC\(_{mec}\) elements, respectively, M-PCR 5 identifies the
transposons Tn554 and copy Tn554 integrated into the J2 regions of type II and III SCC\textit{mec} elements, and M-PCR 6 identifies plasmids pT181 and pUB110 integrated into J3 regions. Almost all the SCC\textit{mec} types can be identified by this method.

(vi) Recently, Milheirico and coworkers updated the multiplex PCR assay described in 2002 by Oliveira \textit{et al} [312]. The updated method improves the detection of SCC\textit{mec} types I to IV and includes the determination of the structure of SCC\textit{mec} types V and VI.

(vii) Staphylococcal \textit{ccrB} sequence typing was developed by Olivei-ra and co-workers. The method based on the sequence of an internal fragment of \textit{ccrB} gene can classify the SCC\textit{mec} types from I to IV[12]. A staphylococci \textit{ccrB} sequence typing database Internet website has been developed (http://www.ccr\textit{b}typing.net). Occasionally, these methods give different results in SCC\textit{mec} typing of the same MRSA isolate.

2.8.6 Multilocus sequence typing

Multilocus sequence typing (MLST) is a typing technique based on nucleotide sequences of internal fragments of seven housekeeping genes. It can be used for all bacterial species. A different number is given to each different sequence of the same allele. The alleles of the seven genes define an allelic profile designated sequence type (ST). The algorithm based upon related sequence types (BURST) is used to define clonal complexes (CCs) and to study the evolutionary events within an \textit{S. aureus} population (www.eburst.mlst.net).

In 2000, MLST \textit{S. aureus} scheme was developed by Enright \textit{et al} [2] (www.mlst.net). In 2003, two MLST \textit{S. epidermidis} schemes were developed [319, 320]. Wang scheme is based on the MLST \textit{S. aureus} scheme but Wisplinghoff’s scheme is different and was set on MLST home page. In 2007, a new MLST \textit{S. epidermidis} scheme was described by Thomas \textit{et al} [321] and the Wisplinghoff scheme was replaced by the Thomas scheme on the MLST home page www.mlst.net. MLST typing is an excellent method for studying the molecular evolution of bacteria and is a highly discriminatory method. MLST typing data can be shared between laboratories via the Internet; other typing methods are very poor in this point. The drawback of the MLST method is that it is costly, lengthy (many steps), time consum-
ing and not useful for investigation of local outbreaks. Nor does it tolerate even a single nucleotide mistakes in sequencing282, 283.

2.8.7 \textit{spa} typing

This method was described by Frenay. It is based on the sequence of the polymorphic X region of the MRSA protein A (\textit{spa}) locus, which contains a number of 24 bp repeat units322. The repeat units have a slow point mutation rate but faster changes occur in the number of repeats due to the gain or loss of repeats323–325. A \textit{spa} type is composed of different repeats, each of which represents 24 nucleotides (eight codons). The repeats of the \textit{spa} types are determined with software Ridom StaphType (Ridom GmbH, Würzburg, Germany). By using this software the results can be exchanged between laboratories worldwide. It also means that a common nomenclature (http://www.spaserver.ridom.de/) can be used. The discriminative power of \textit{spa} typing is almost as good as that of PFGE, but it is lower than the power of MLST. \textit{spa} typing can be used for both short- and long-term studies of MRSA epidemiology324. \textit{spa} typing has rapidly become an important and most widely used method and it currently is the primary technique for typing MRSA in some laboratories. Because only a single locus is sequenced in \textit{spa} typing, compared to seven loci in MLST, it is less expensive, less laborious and less time consuming. However, there are two nomenclature systems available324, 326, which would make difficult to compare results.

2.8.8 Multiple-locus variable-number tandem-repeat typing

Multiple-locus variable-number tandem repeat analysis (MLVA) is a typing technique based on a variable numbers of tandem repeats (VNTR). Currently, the MLVA technique is used for typing many bacterial species282, 327–336. The first MLVA typing for \textit{S. aureus} was developed by Sabat \textit{et al.}337. It was based on five VNTR loci (\textit{sdr}, \textit{clfA}, \textit{clfB}, \textit{ssp} and \textit{spa} gene). Later, many MLVA schemes have been developed282, 338–341. In 2009, a new MLVA scheme for \textit{S. aureus} was described342. The target genes in this scheme are VNTR09-0 (\textit{sspA}), VNTR61-01, VNTR61-02, VNTR67-01, VNTR21-01, VNTR24-01 (\textit{spa}), VNTR63-01 and VNTR81-02\textit{(coa)}. The main advantage of this method is its portability. MLVA typing for \textit{S. epidermidis} was developed by Johansson \textit{et al.}343. It was based on five VNTR loci (Se1-Se5). The MLVA database Internet website was developed by Le Feche and Denoeud344, 345.

THL – Research 35/2010

Methicillin Resistance in Staphylococci: Horizontal Transfer of Mobile Genetic Element (SCC\textit{mec}) between Staphylococcal Species
In general, MLVA is a highly discriminatory typing method and it is easy to use. MLVA is as valuable as PFGE, but MLVA typing data can be easily shared between laboratories. However, MLVA techniques are still in the development stage.

2.8.9 Tools for typing of Finnish MRSA

The system for typing Finnish EMRSA isolates (MRSA isolates that share the same typing patterns and are isolated from two or more persons in several hospitals) has been constantly updated. From the beginning of 1992 to 2001 there were four typing methods: PFGE, phage typing, ribotyping and antibiogram\(^{127}\), and PFGE was the primary method for the identification of Finnish MRSA strains. The EMRSA were named according to the geographic location where they were first identified. In the beginning of 2002, phage typing and ribotyping were replaced by MLST, \(Spa\) typing and \(SCCmec\) typing. The new FIN names with numeric codes have replaced the old names\(^{346}\). In 2008, the \(spa\) typing became the primary method. The different EMRSA strains were named according to the results gained from these methods.
Table 3. Comparison of typing methods of staphylococci (adapted from: 281, 283, 284, 336). *MLVA method is still in the developmental stage

<table>
<thead>
<tr>
<th>Methods</th>
<th>Simplicity (Ease of use)</th>
<th>Rapidity (no culture time)</th>
<th>Typability⁴</th>
<th>Discriminatory power⁵</th>
<th>Reproducibility⁶</th>
<th>Interpretation</th>
<th>Standard nomenclature</th>
<th>Comparability⁷</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phage typing</td>
<td>Moderate</td>
<td>≤ 3 days</td>
<td>Partial</td>
<td>Poor</td>
<td>Poor</td>
<td>Moderate</td>
<td>No</td>
<td>Poor</td>
<td>Low</td>
</tr>
<tr>
<td>Anti-biogram</td>
<td>Easy</td>
<td>≤ 2 days</td>
<td>All</td>
<td>Poor</td>
<td>Good</td>
<td>Easy</td>
<td>No</td>
<td>Poor</td>
<td>Low</td>
</tr>
<tr>
<td>PFGE</td>
<td>Difficult</td>
<td>≤ 4 days</td>
<td>All</td>
<td>Good</td>
<td>Good</td>
<td>Difficult</td>
<td>No</td>
<td>Difficult</td>
<td>Medium</td>
</tr>
<tr>
<td>Ribotype</td>
<td>Moderate</td>
<td>≤ 5 days</td>
<td>All</td>
<td>Moderate</td>
<td>Fair</td>
<td>Difficult</td>
<td>No</td>
<td>Moderate</td>
<td>Medium</td>
</tr>
<tr>
<td>SCCmec typing</td>
<td>Easy</td>
<td>≤ 2 days</td>
<td>All</td>
<td>Fair</td>
<td>Excellent</td>
<td>Easy</td>
<td>Yes</td>
<td>Excellent</td>
<td>Low</td>
</tr>
<tr>
<td>MLST</td>
<td>Difficult</td>
<td>≤ 7 days</td>
<td>All</td>
<td>Good</td>
<td>Excellent</td>
<td>Moderate</td>
<td>Yes</td>
<td>Excellent</td>
<td>High</td>
</tr>
<tr>
<td>spa sequencing</td>
<td>Moderate</td>
<td>≤ 3 days</td>
<td>All</td>
<td>Good</td>
<td>Excellent</td>
<td>Moderate</td>
<td>Yes</td>
<td>Excellent</td>
<td>High</td>
</tr>
<tr>
<td>MLVA*</td>
<td>Easy</td>
<td>≤ 3 days</td>
<td>All</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Easy</td>
<td>Yes</td>
<td>Excellent</td>
<td>Low</td>
</tr>
</tbody>
</table>

⁴Typability: the ability of the method to provide a clear result for each isolate analysed.

⁵Discriminatory power: The ability of the method to differentiate unrelated isolates.

⁶Reproducibility: Independency of the operator, time and place.

⁷Comparability: Ease of exchanging results electronically between laboratories.
3 AIMS OF THE STUDY

The purpose of this study was to study the genetic characteristics and putative horizontal transfer of the mobile genetic element SCCmec in Finnish S. aureus isolates and coagulase-negative staphylococci.

The specific aims were:

1. To study the diversity of the genomic backgrounds of epidemic MRSA isolates in comparison to methicillin-sensitive S. aureus (MSSA) isolates in Finland.

2. To study the molecular characteristics of bacteremic methicillin-resistant S. epidermidis (MRSE) strains, and to compare SCCmec of S. epidermidis with that of S. aureus.

3. To study the SCCmec elements in the carriers of methicillin-resistant staphylococci in a long-term care facility in Finland and especially the structure of the SCCmec elements of methicillin-resistant coagulase-negative staphylococci (MR-CNS) and MRSA isolated from the same person at the same time.

4. To study the SCCmec elements in clinical human isolates of Staphylococcus sciuri, the species suggested as the origin of mecA genes.
4 MATERIALS AND METHODS

4.1 Bacterial strains and the patients (I, II, III, IV)

The study material included a total of 528 bacterial isolates belonging to *Staphylococcus* species (Table 4). The isolates were stored at -70°C in sterilised skim milk. In the studies I, II and IV, one isolate per patient was studied. In study III, one to five isolates per patient were studied. The control strains used are listed in Table 5.

In study I, the 299 clinical isolates of MSSA were collected by the clinical microbiology laboratory of the Helsinki University Central Hospital (HUCH) during the three last months of 2001. These isolates were from a variety of infection sites. HUCH serves several hospitals and health care centres in Southern Finland with a population of nearly 1.4 million. In addition, study I included 24 EMRSA isolates derived from the THL culture collection, which includes all clinical and carriage MRSA isolates collected since the early 1990s.

In study II, 60 clinical MRSE blood isolates were studied, including 22 MRSE isolates collected from a neonatal intensive care unit (NICU) of Children’s Hospital of Helsinki between March 1997 and May 1998, and 38 MRSE isolates that previously had been characterised as true bacteremic isolates and were considered to represent the most prevalent clones causing MRSE bacteremia in four different units at HUCH in 1990–93347.

In study III, a one day point–prevalence study of the nasal carriage of staphylococci was carried out six months after an outbreak of MRSA in a long-term care facility (LTF). 127 CNS and 24 *S. aureus* isolates were obtained from nasal swabs of 76 patients. One swab per patient was taken from both nostrils.

In study IV, the fifteen *S. sciuri* clinical human isolates of three subspecies isolated from various sites were provided by Dr Jérôme Etienne, Centre National de Référence Staphylocoques, Lyon, France348.

4.2 Identification of staphylococcal isolates (I, III)

The swabs were cultivated on nonselective sheep blood agar (SBA, CM1008, Oxoid, United Kingdom) and incubated overnight at 37°C.

All the isolates were identified by standard laboratory methods, including the catalase test, coagulase test, conventional biochemical tests and API ID 32 Staph (BioMe’rieux, Marcy l’Etoile, France). In some instances, the
GenoType® Staphylococcus (Hain Lifescience, Germany) test was performed.

4.3 Antibiotic susceptibility testing (I, II, III)

Antibiotic susceptibility testing was performed by disc diffusion method and the results were interpreted using CLSI guidelines\(^{349}\). The following antibiotics were tested: ampicillin, penicillin, cephalaxin, cefuroxime, gentamicin, tobramycin, erythromycin, clindamycin, chloramphenicol, ciprofloxacins, rifampin, fusidic acid, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, teicoplanin and mupirocin (AB Biodisk, Solna, Sweden). Minimal inhibitory concentration (MIC) to oxacillin was tested by using E-test (E-test; AB Biodisk, Solna, Sweden). The MRSA strains were verified by testing for the presence of the nuc and \(\text{mecA}\) genes as described previously\(^{350}\).

Table 4. Bacterial isolates and methods used in the study

<table>
<thead>
<tr>
<th>Study</th>
<th>Staphylococcus species</th>
<th>Properties</th>
<th>Site of isolation (No. of isolates)</th>
<th>Year of isolation</th>
<th>Methods used</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(S. aureus)</td>
<td>Clinical isolates</td>
<td>Wound (118), urine (38), upper respiratory tract (27), skin (27), abscess (24), eye (21), ear (20), blood (10) and other sites (14)</td>
<td>2001</td>
<td>Conventional microbiological methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSSA</td>
<td>Various sites (24)</td>
<td></td>
<td>Antimicrobial susceptibility testing, PFGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemic MRSA</td>
<td></td>
<td></td>
<td>Ribotyping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MLST</td>
</tr>
<tr>
<td>II</td>
<td>(S. epidermidis)</td>
<td>Bacteremic</td>
<td>Blood (38)</td>
<td>1990-1993</td>
<td>Antimicrobial susceptibility testing, PFGE, SCC(\text{mec}) typing and MLST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRSE isolates</td>
<td>Blood (22)</td>
<td>1997-1998</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>(S. aureus)</td>
<td>Nasal carriage isolates</td>
<td>Nose (18)</td>
<td>2004</td>
<td>Conventional microbiological methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coagulase negative staphylococci</td>
<td></td>
<td></td>
<td>Antimicrobial susceptibility testing, PFGE, SCC(\text{mec}) typing and MLST</td>
</tr>
<tr>
<td>IV</td>
<td>(S. sciuri) (S. rodentium) (S. carnaticus)</td>
<td>Clinical human isolates</td>
<td>Various sites (8) various sites (5) various sites (2)</td>
<td>1990-1997 (Marsou et al. 1999)</td>
<td>PFGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southern hybridisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dot blot hybridisation</td>
</tr>
</tbody>
</table>
Table 5. The control strains used in this study

<table>
<thead>
<tr>
<th>Species and strain</th>
<th>Procedure</th>
<th>Study</th>
<th>Reference/ Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus MSSA (ATCC25923), Escherichia coli (ATCC25922), Pseudomonas aeruginosa (ATCC27853)</td>
<td>Antimicrobial susceptibility testing</td>
<td>I, II, III</td>
<td>American Type Culture Collection (ATCC, USA)</td>
</tr>
<tr>
<td>S. aureus (NCTC 8325) Citrobacter koseri</td>
<td>PFGE Ribotyping</td>
<td>I, II, III, IV</td>
<td>Harmony collection (http://www.harmony-microbe.net/microtyping.htm) THL Culture Collection</td>
</tr>
<tr>
<td>MRSA Iberian clone (HPV107) UKEMRSA-16 (96/32010) Brazilian clone (HSJ216) Pediatric clone (HDE288)</td>
<td>SCCmec typing Southern hybridisation Dot blot hybridisation</td>
<td>II, III, IV</td>
<td>Harmony collection (http://www.harmony-microbe.net/microtyping.htm)</td>
</tr>
<tr>
<td>Finnish EMRSA (FIN-22, IH 101468)</td>
<td></td>
<td></td>
<td>THL Culture Collection</td>
</tr>
<tr>
<td>S. epidermidis (ATCC 12228)</td>
<td>MLST</td>
<td>II</td>
<td>American Type Culture Collection (ATCC, USA)</td>
</tr>
<tr>
<td>S. aureus, Finnish MRSA 1061 Finnish EMRSA FIN-2b (IH 99524)</td>
<td>Southern hybridisation Dot blot hybridisation</td>
<td>IV</td>
<td>P. Kuusela et al., 1994 THL Culture Collection</td>
</tr>
</tbody>
</table>

4.4 Molecular genotypes (I-IV)

4.4.1 DNA extraction (I, II, III, IV)

In studies I, II and IV, the bacterial genomic DNA was prepared by the rapid guanidium thiocynate (GES) method. The concentration of the eluted DNA was determined with UV/VIS Spectrophotometer Lambda 10 (Perkin Elmer, Berlin, Germany). In study III, the template DNA was prepared by dissolving a 1-µl loopful of bacteria in 150 µl of lysis buffer followed by incubation at 95°C for 10 min and centrifugation at 3,000 x g for 5 min. An aliquot of the supernatant was used as PCR-template. The oligonucleotide primers for all PCR reactions used in this study are listed in Table 6.
4.4.2 Pulsed field gel electrophoresis (I, II, III, IV)

For PFGE, one bacterial colony was grown overnight in 3 ml of brain heart infusion (BHI; Difco Laboratories, Detroit, MI) broth at 37°C with shaking. The cells were pelleted by centrifugation at 13000 xg for 1 min. Plugs were prepared by resuspending the pellets in 200 µl of EC buffer [6 mM Tris-HCl (pH 7.5), 1 M NaCl, 100 mM EDTA, 0.5% Brij 58, 0.2% Na-deoxycholate, 0.5% sodium lauroyl sarcosine], supplemented with 20 µl of lysostaphin (1mg/ml; Sigma, St Louis, Missouri, USA), and 200 µl of molten 1.5 % Seakem Gold agarose (Cambrex, Rockland, Maine, USA). Plugs were placed in EC buffer for one hour at 37°C, followed by one wash with TE buffer (10mM Tris-HCl, 1mM EDTA, pH8.0) for one hour at 55°C. A portion of the plug was digested with 35 U of Smal enzyme (Roche Diagnostics GmbH, Mannheim, Germany). Separation was performed in 1.1% Seakem Gold agarose in 0.5xTBE (0.045 M Tris-borate, 0.001 M EDTA) in a CHEF-DRIII system (Bio-Rad Laboratories, Richmond, California, USA) or Gene Navigator TM system (Pharmacia, Uppsala, Sweden). Running conditions were according to the Harmony protocol. The PFGE patterns were analysed by BioNumerics software (version 2.0, Applied Maths, Kortrijk, Belgium). After initial classification by computer assisted analysis, the patterns were further interpreted according to established guidelines. The PFGE patterns with seven or more band differences were considered different types, and with one to six band differences as subtypes.

4.4.3 Ribotyping (I)

In study I, ribotyping was performed as described previously. Ribotype patterns with one band difference were considered different types. The patterns were determined by visual analysis and were designated by letters.

4.4.4 Multilocus sequence typing (I, II)

MLST for \textit{S. aureus} (Study I) was performed as previously described by Enright \textit{et al.}, and MLST for \textit{S. epidermidis} (Study II) was carried out by using the MLST scheme described by Thomas et al. The Vector NTI program (Invitrogen Corporation, Carlsbad, California, USA) was used for sequence analysis.
<table>
<thead>
<tr>
<th>Method</th>
<th>Target element</th>
<th>Nucleotide sequence 5'-3'</th>
<th>Reverse primer</th>
<th>Nucleotide sequence 5'-3'</th>
<th>GenBank accession number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PCR typing</td>
<td>mecA</td>
<td>TCCAGATTACAACATTCCACAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus A</td>
<td>TTCGAGTTGCTGATGAAAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus B</td>
<td>AAACTCCTAGCATTGGATGTC</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus C</td>
<td>ATCAACAGTTGACATCCAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus D</td>
<td>ATCAACAGTTGACATCCAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus E</td>
<td>GTTACCTGCTGATGAAAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus F</td>
<td>GTAATCGTTGCTGATGAAAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus G</td>
<td>GTAATCGTTGCTGATGAAAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Locus H</td>
<td>GTAATCGTTGCTGATGAAAGG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td>M-PCR typing</td>
<td>cerA</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerB</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerC</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerD</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerE</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerF</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerG</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>cerH</td>
<td>TACGTACATCAGATCAGTATG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
<tr>
<td>Single PCR</td>
<td>IS4311-mecA</td>
<td>TGAGGTATTCATGATTTGCACTG</td>
<td>MECAP7</td>
<td>CCACCTCCATATCTGTGTAACG</td>
<td>Y00688</td>
<td>352</td>
</tr>
</tbody>
</table>

Table 6. Oligonucleotides used in the PCR detection and sequencing in this study. *These PCR fragments were used as probes.**

Locus A: upstream of the *pls* gene; locus B: *kdp* operon; locus C: *mecI* gene; Locus D: *dcs* region; Locus E: between integrated p258-Tn554; Locus F: between Tn554 and *orfX*; Locus G: left junction between IS431- pUB1101; Locus H: left junction between IS431- pT181.
Methicillin Resistance in Staphylococci: Horizontal Transfer of Mobile Genetic Element (SCC_mec)

<table>
<thead>
<tr>
<th>Type</th>
<th>m1</th>
<th>m4</th>
<th>m6</th>
<th>m16</th>
<th>m26</th>
<th>m30</th>
<th>m41</th>
<th>m57</th>
<th>m74</th>
<th>m84</th>
<th>m85</th>
<th>m90</th>
<th>m146</th>
</tr>
</thead>
</table>
| IS1272-_mecA | IS5 | AAGCCCACTCCTAAACCATATGGA | m4A | TATACCAACCGGACAC | AB037671
| me6-l-_mecA | mecA | CAATTGAGTGAACAGCGCTT | m16 | TATACCAACCGGACAC | AB037663
| mecR-l-_mecA | mecR2 | GCTCGAAATGATTGTTGGA | m26 | TATACCAACCGGACAC | AB037603
| des region-_mec | DCS R1 | CTAATCATACCTGACGACG | m30 | TATACCAACCGGACAC | AB037671
| IS1272-_mciA | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciC | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciD | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciE | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciF | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciG | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciH | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciI | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciJ | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciK | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciL | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciM | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciN | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciO | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciP | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciQ | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciR | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciS | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciT | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciU | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciV | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciW | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciX | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciY | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671
| IS1272-_mciZ | IS5 | AAGCCCACTCCTAAACCATATGGA | m41 | TATACCAACCGGACAC | AB037671

MLST (S. aureus)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Carbamate kinase</th>
<th>Serine/threonine kinase</th>
<th>Glycerol kinase</th>
<th>Guanylate kinase</th>
<th>Phosphatase</th>
<th>Trisophosphatase</th>
<th>Acetyl coenzymeA:acyltransferase</th>
<th>MLST (S. aureus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
</tbody>
</table>

MLST (S. epidermidis)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Carbamate kinase</th>
<th>Serine/threonine kinase</th>
<th>Glycerol kinase</th>
<th>Guanylate kinase</th>
<th>Phosphatase</th>
<th>Trisophosphatase</th>
<th>Acetyl coenzymeA:acyltransferase</th>
<th>MLST (S. epidermidis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
<tr>
<td>IS1272-_mecA</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
<td>arcC-_up</td>
</tr>
</tbody>
</table>
The alleles and the allelic profiles for each of the seven housekeeping loci and the STs were obtained from the MLST database (http://www.mlst.net, http://sepidermidis.mlst.net) for *S. aureus* and *S. epidermidis*, respectively.

4.4.5 SCCmec typing (II, III)

The initial classification of the SCCmec types was performed by multiplex PCR (M-PCR) as previously described\(^{232}\) with slight modifications described in study II. The M-PCR detects eight loci (A through H) within SCCmec and uses *mecA* as an internal control.

SCCmec elements typing: In study II, for checking for the presence of individual genes and other DNA areas within the SCCmec element, we used the short and long-range PCRs as previously described\(^ {270}\). The amplified products were run through 0.7% Sea Kem agarose (FMC BioProducts, Rockland Me, USA) gel in 0.5xTBE buffer at 100 V for one hour.

In study III, analysis of the *ccr* types (*ccrAB1*-4 and *ccrC*) and *mecA* (as an internal control) was performed by M-PCR1 and the *mec* classes A, B, and C was performed by M-PCR2 as previously described by Kondo and co-workers\(^ {312}\). The amplified products were analysed by gel electrophoresis in 2 % Sea Kem agarose gel in 0.5xTBE buffer at 100 V for two hours.

4.4.6 Southern hybridisation and Dot blot hybridisation (IV)

In study IV, testing for the presence of seven loci (A-H) representing different types of *S. aureus* SCCmec regions, *mecA*, the recombinase genes in type I, II and III SCCmec (*ccrAB1*-3) and *pls* gene in *S. sciuri*, dot blot hybridisation was used for all 15 strains, and Southern hybridisation was used for only three *S. sciuri* strains. These methods were performed as described previously\(^ {49}\). Thirteen digoxigenin-labeled probes (Table 6) were designed to differentiate between the eight *S. aureus* SCCmec loci in M-PCR\(^ {232}\). Also probes for *pls*, *mecA* and *ccrAB1*-3 genes were used. For *pls* probe see reference\(^ {49}\). More details are in the original article IV. PFGE was carried out as previously described for *S. aureus*\(^ {303}\).
4.5 Ethical aspects (studies I-IV)

Based on Finnish laws, the THL must conduct infectious disease surveillance and research in this area. Also, Finnish clinical microbiology laboratories must report certain infectious disease agents and cases to the NIDR. Thus, no ethics committee approval was required for studies I, II, and IV. My coworkers and I were at liberty to collect the samples from the residents in study III with the approval of the Ministry of Social Affairs and Health as well as of the data protection authority. In addition, permission for sampling was requested and obtained from each individual patient.
5 RESULTS

5.1 Genomic diversity of MSSA in Southern Finland (I)

This study was designed to examine the genetic backgrounds of both MSSA and MRSA PFGE was applied to determine the clonal relationships between 299 clinical MSSA isolates and 24 representative EMRSA strains in Finland.

5.1.1 Demographic data of the patients

A total of 299 patients were enrolled in the study, 57% of whom were females. The median age of all patients enrolled in the study was 56 years (age range, 1 to 95 years). A majority of paediatric patients (74%) were males (Figure 7).

![Figure 7. the numbers of the patients according to age and gender](image)

5.1.2 Genotypic characteristics of MSSA

Among the 299 MSSA strains, 30 different PFGE types were identified. Sixty-eight percent (N=204) of MSSA strains had a genotype related to eight of the 24 epidemic MRSA strains. The remaining MSSA strains with unrelated genotypes to EMRSA (N=95) formed a heterogeneous
group showing 22 different genotypes (Figure 8). Of the twelve most prevalent MSSA strains (i.e. MSSA isolated from 5 or more persons during the study period), six were related to EMRSA (Figure 8).

Ribotyping and MLST were carried out to confirm the clonal relationship between MSSA and EMRSA isolates. We selected 49 MSSA isolates for ribotyping. These isolates were grouped to twelve most prevalent MSSA strains (i.e., MSSA isolated from five or more persons during the study period): six MSSA strains (20 isolates) which were PFGE subtypes of EMRSA strains, and six MSSA strains (29 isolates) which were unrelated to EMRSA. Twenty different ribotype profiles were distinguished between these strains. Three of the six MSSA strains related to EMRSA strains had ribotype profiles similar to those of the corresponding EMRSA strains and two of the six MSSA strains unrelated to EMRSA shared a ribotype with MRSA.

For MLST, one selected isolate from each group of prevalent MSSA strains was chosen. Twelve different allelic MLST profiles (ST) were found. The MSSA strains related to EMRSA strains had the same ST profiles as the corresponding EMRSA strains. The variation of ribotype and MLST profiles within PFGE types is shown in Figure 9. MSSA-FIN-MSSA-FIN-7 and MSSA-FIN-16 subtypes showed the same ribotype and STs as that of the corresponding EMRSA (Figure 9; clusters 2, 4 and 5).
Figure 9. Molecular characteristics of the Finnish MSSA strains according to PFGE, Ribotype and MLST analysis. Cluster 1: sequence type different from that of the corresponding EMRSA with an identical ribotype. Clusters 2, 4 and 5: ribotype and sequence type the same as that of the EMRSA. Clusters 3 and 6: sequence type the same as that of the EMRSA with more than one ribotype.

*) Nomenclature based on old EMRSA naming system used before 2005

**) Nomenclature based on a new EMRSA naming system

THL – Research 35/2010 70

Methicillin Resistance in Staphylococci: Horizontal Transfer of Mobile Genetic Element (SCCmec) between Staphylococcal Species
The MSSA-FIN-14 and MSSA-FIN-10 subtypes showed sequence types similar to those of the corresponding EMRSA also of more than one ribotype (Figure 9; clusters 3 and 6). On the other hand, MSSA-FIN-5 subtype showed sequence type (ST589) differing from that of the corresponding EMRSA (ST30) but still had the same ribotype as EMRSA (ST30) (Figure 9; cluster 1).

5.2 Molecular epidemiological characteristics of clinical MRSE strains (II)

In this study, 60 bacteremic MRSE strains were genotyped by PFGE, SCCmec typing and MLST methods for analysis of the clonality of MRSE strains and the SCCmec types in *S. epidermidis*.

5.2.1 SCCmec types in clinical MRSE strains

First, the SCCmec types of MRSE strains were examined using the M-PCR232. Sixty MRSE strains were positive for *mecA* and negative for loci H and B. The SCCmec type IA was identified in four of sixty strains. The remaining 56 strains had six different PCR patterns that did not correspond to any of the previously known patterns and are thus classified as new patterns (P1–P6) (Figure 10). All these patterns (Figure 1 in Study II) were studied using a simplex PCR. SCCmec type IA possessed the ccrA1 and class B *mec* complex as expected. The SCCmec patterns (P1–P6) included *ccrA2*, *ccrA3* and both class A and class B *mec* complexes. Three of them also had *ccrC* (P1, P4 and P6).

In addition, some genes were amplified to recognise the locations of these genes in the SCCmec region. Amplification of the DNA regions from *ccrA2* to *ccrA3* and from *ccrA3* to *ψTn554* produced amplicons. Also, the DNA regions from *IS1272* to *mecA*, from *mecI* to *mecA*, from *mecRI* (PB) to *mecA*, and from *IS1272* to *mecRI* (MS) were amplified. The DNA regions from *IS1272* to *mecI*, and from *IS1272* to *mecRI*(PB), and the transposon *Tn544* (TnpA), could not be amplified from DNA yielding any of the SCCmec patterns (P1–P6). The DNA region from the *dcs* region to *mecA* was amplified in the cases of P1, P4, P5 and P6. The mer operon was present in DNA of all six patterns except P3 (Table 3 and Figure 2 in Study II).
Figure 10. Distribution of SCC\textit{mec} multiplex patterns of MRSE
P1, IIIA (loci F, E and C) and IVA (loci G and D)
P2, IIIB (locus C) and IV (locus D)
P3, IIIB (locus C) and IVA (locus G without locus D)
P4, IIIA (loci F, E and C) and IV (locus D)
P5, IIIB (locus C) and IVA (loci G and D)
P6, IIIA (loci F and C, without locus E) and IV (locus D)
IA, (loci A, D)

5.2.2 The PFGE types in clinical MRSE strains

The 60 MRSE isolates were analysed for their clonality by PFGE. Eleven PFGE types (FIN-SE-1 to FIN-SE-11) were found with a number of subtypes (Figure 11). The most prevalent PFGE type (FIN-SE-1, n = 18) was found during 1990–1992 in three units. FIN-SE-6 was found in both the PHU and AHU-A, but with an interval of 3 years. All 12 different representative PFGE types (including one subtype) belonged to ST 2 (study II, Table 2).
Figure 11. Genetic background information of the Finnish MRSE strains analysed by PFGE, SCCmec typing and MLST. NICU, neonatal intensive care unit; PHU, paediatric haematology unit; AHU-A, adult haematology unit A; AHU-B, adult haematology unit B.
5.3 Carriage of MR-staphylococci and their SCC\textit{mec} types in a long-term care facility (III)

One hundred and twenty-seven CNS and 24 \textit{S. aureus} isolates were isolated from the nasal swabs of 76 patients during a clinical surveillance study in a long-term care facility in 2004. In this study, standard microbiological techniques were applied for species identification and antimicrobial susceptibility tests for search for methicillin-resistance. SCC\textit{mec} typing methods were also used to examine the structure of the SCC\textit{mec} elements of MR-CNS strains and for structural comparison of the SCC\textit{mec} elements of MRSE and MRSA isolated from the same person at the same time.

5.3.1 The epidemiological background of the patients

The median age of 76 patients was 80 years (range, 35 to 99 years), 36\% were male (n =27), 26\% used antimicrobials (n =20), and 5\% used foreign devices (n =4). The median length of nursing stay was 9 months (range, 1 to 90 months).

5.3.2 Nasal carriage of CNS in a long-term care facility

Seventy-three of 76 patients (96\%) were colonised with a staphylococcal species; 67 (92\%) were colonised by at least one CNS strain, 49 (73\%) by only CNS and 18 (27\%) by CNS in combination with \textit{S. aureus}. Only \textit{S. aureus} was found in six persons (8\%). Forty-one (41) of 67 CNS (61\%) carriers were colonised with at least one MR-CNS strain, and two of them carried MRSA as well. Methicillin-susceptible CNS strains were found in twenty-six (39\%) patients, and one of them carried also MRSA. 127 isolates were obtained from the 67 patients with CNS, 61 (48\%) were shown to be methicillin-resistant (Figure 12).
5.3.3 Distribution of the SCCmec types between carriages of MR-CNS strains

The 61 MR-CNS isolates tested by M-PCR, and three MRSE strains could be classified as SCCmec type I and two as SCCmec type IV. Among the other MR-CNS species, one MR-S. capitis isolate could be classified as SCCmec type IA. Only mecA was amplified in one MRSE isolate, two MR-S. capitis isolates and one MR-S. hominis isolate. The remaining 51 MR-CNS isolates, including 43 MRSE isolates, seven MR-S. capitis isolates and one MR-S. haemolyticus isolate, could not be interpreted as belonging to any of the currently described SCCmec types.

The SCCmec elements of strains representing all multiplex SCCmec PCR patterns were tested. Among 49 MRSE isolates, three (6%) had SCCmec type I, two (4%) type II, 18 (37%) type IV, and nine (12%) type V. Three isolates were of a nontypeable SCCmec type, as neither the ccr genes nor the mec genes could be amplified. The remaining 14 isolates had ccr and mec complex gene combinations for which no names have been previously assigned. Among the ten MR-S. capitis isolates, three had SCCmec types IA, II, and IV, and two harboured type V. The remaining five isolates harboured a new SCCmec type. The one MR-S. haemolyticus isolate harboured SCCmec type IV, and the one MR-S. hominis isolate harboured a new SCCmec type (Figure 13).
5.3.4 The structure of the SCC\textit{mec} elements of MRSE and MRSA isolated from the same person

Two patients were colonised by both MRSE and MRSA. The first one carried a MRSA strain and three MRSE strains. The MRSA strain and one of the MRSE strains harboured SCC\textit{mec} type V (\textit{ccr}C and class C), while the two MRSE strains were of different SCC\textit{mec} types, type II (\textit{ccr}A2 and class A) and a new SCC\textit{mec} type (\textit{ccr}C and \textit{mec}, class A). The second carrier had MRSA and MRSE, both of which harboured SCC\textit{mec} type V. The MRSE multiplex SCC\textit{mec} patterns varied among the isolates (Table 7). The two MRSA strains were representatives of a Finnish epidemic strain (FIN-7 and FIN-7 subtype), and the four MRSE strains had unique PFGE profiles (Study III, Table 2 and Figure 2).
Table 7. Distribution of the SCCmec types/elements within the MR staphylococcal isolates in two patients colonised with MRSA and MRSE.

<table>
<thead>
<tr>
<th>Staphylococcal species</th>
<th>SCCmec-type</th>
<th>Amplified loci by the Oliveira strategy</th>
<th>Amplified loci by the Kondo strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ccr type</td>
</tr>
<tr>
<td>First patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRSA</td>
<td>V</td>
<td>mecA, F</td>
<td>ccrC</td>
</tr>
<tr>
<td>MRSE</td>
<td>NT II V</td>
<td>mecA, B, F, mecA, C, D, A mecA, E (very faint), F, A</td>
<td>ccrC ccrA2 ccrC</td>
</tr>
<tr>
<td>Second patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRSA</td>
<td>V</td>
<td>mecA, F</td>
<td>ccrC</td>
</tr>
<tr>
<td>MRSE</td>
<td>V</td>
<td>mecA, E (very faint), F, A</td>
<td>ccrC</td>
</tr>
</tbody>
</table>

5.3.5 SCCmec regions of different S. aureus SCCmec types in S. sciuri

The presence of areas homologous to different types of S. aureus SCCmec regions in S. sciuri DNA was examined. Dot blot hybridisation was used for all 15 strains and, additionally, Southern hybridisation was used for three strains (see the article IV for information about N920212, N950120, and N960546). Thirteen digoxigenin-labeled probes designed to differentiate among type I to IV SCCmec regions were used in the PCR amplification reactions. All the strains had unique PFGE profiles. Twelve of the 15 S. sciuri strains carried the pls gene. mecA hybridisation for the 15 S. sciuri strains showed that seven MS-S. sciuri strains had a single weak band by mecA-positive.. Of the remaining eight strains 4 had a single strong mecA-positive band and 4 others had (Table 1 and Figure 1 in Study IV). Locus A probe gave negative results in all 15 S. sciuri strains. Locus C probe gave negative results in the strains without mecAS. aureus. Locus G, locus H and ccr gene probes gave positive result in dot blotting for 12 strains and also these probes bound to negative control DNA. Four S. sciuri strains did not hybridize with any of the ccr probes. Loci B, D, and F probes gave negative results in all the S. sciuri that contained only the S. sciuri copy of mecA.
6 DISCUSSION

One of the most important questions in the molecular evolution of *S. aureus* and MRSA development is the possible role of horizontal gene transfer. In this study, the possibility of horizontal transfer of SCC\textit{mec} elements between the Finnish *S. aureus* and CNS was studied. Furthermore, the genetic characteristics of their SCC\textit{mec} elements were analysed.

6.1 Genomic backgrounds of MSSA and EMRSA (I)

Do the MRSA strains develop from MSSA strains that get the SCC\textit{mec}? Are there certain *S. aureus* strains that are more prone to accept and acquire methicillin-resistance? In study (I), these questions were addressed by studying the genomic diversity of 24 representative Finnish EMRSA strains in comparison to 299 clinical MSSA strains. A high genomic diversity consisting of 30 PFGE profiles was identified among the MSSA isolates. The majority of the MSSA strains (68%) were related to eight of the EMRSA strains and the MSSA unrelated to EMRSA showed heterogeneous group of 22 PFGE profiles. This is consistent with the findings of Goering and coworkers351 who showed that globally MRSA and MSSA strains shared the same genetic backgrounds with higher diversity in MSSA.

It was previously elucidated that three of the EMRSA strains were more likely to be acquired from a community than from a hospital setting. These CA-MRSA strains were usually sensitive to antibiotics other than β-lactams127. In this study, the genotypes of five EMRSA are common (63%) among the MSSA strains. Two of them are CA-MRSA (FIN-4 and FIN-14) and three others are non-multi-resistant MRSA (FIN-10, FIN-7 and FIN-5) which have been found in hospitals and the community. The five EMRSA strains all carry the small size SCC\textit{mec} type IV suggesting that this type of SCC\textit{mec} is more readily transmissible between staphylococci than the other SCC\textit{mec} types. Thus, SCC\textit{mec} type IV might be the most successful SCC\textit{mec} type turning MSSA strains into MRSA within the human normal microbiota. Five percent (5%) of the MSSA strains related to EMRSA showed one intra hospital EMRSA genotype (FIN-16). It is multi-resistant and carries SCC\textit{mec} type IA. However, according to Lina and coworkers, SCC\textit{mec} type IV might have developed from SCC\textit{mec} type I352. The MSSA-FIN-5 subtypes possess identical ribotypes.
but showed a sequence type different (ST589) from the corresponding EMRSA (ST30) (Figure 9; cluster 1). In the case of this particular strain, the different MLST profiles within the same PFGE-subtypes and one ribotype reflect the high discriminatory power of MLST in comparison to PFGE and ribotyping (Figure 10). In general, a good correlation was observed between the MLST and PFGE results.

Within the eight clusters of MSSA related to EMRSA, most of the variability between the subtypes of any genotype occurred in the mid-range molecular weight area (674 kb-175kb) of PFGE profiles. This area is known to harbour the *mecA* complex (Figure 9). The results suggest that the acquisition of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred. Previously, it has been reported that major MRSA clones have arisen frequently from epidemic MSSA clones. The early MRSA and MSSA isolates, which were isolated in Denmark and the United Kingdom, suggest that the current MSSA isolates serve as early recipients of the *mecA* gene in Europe. Moreover, the horizontal transfer of SCCmec has been shown to occur in a hospitalised patient during antibiotic treatment. Also the loss of SCCmec from the chromosome has been observed in vivo and in vitro.

Some of the MSSA genotypes unrelated to EMRSA were not encountered among all MRSA. For example, the two strains, MSSA5 and MSSA22, possess ST15 and ST20. In the MLST database, these two STs are only encountered among the MSSA strains. This result suggests that there may be some MSSA genotypes that can acquire SCCmec more easily than others. According to several earlier studies, there are some MSSA strains that harbour the remnants of SCCmec without the *mec* complex. The existence of the SCCmec remnants might be native in the genome of some MSSA, or it could be that the MSSA is a former MRSA that has lost its *mecA*. Also, it may be that the SCCmec elements can transfer separately.

6.2 Genotypes of clinical MRSE strains (II)

In this study, the most notable finding is the limited heterogeneity in the genomes of bacteremic MRSE isolates which were collected from four different units at HUCH in two distinct time periods (Figure 11). There were 11 PFGE types among the 60 MRSE isolates, and all the PFGE
types belonged to ST2. Moreover, a single clone was present in four units at HUCH for nearly a decade, which may have resulted in PFGE type diversity over the years. The MRSE clone with ST 2 is known to have circulated also worldwide 321, 357, 358.

6.3 The prevalence of the nasal carriage of MR-CNS in a LCTF (III)

The results show that the nasal carriage of CNS was common among the 76 patients in a long-term care facility setting. The prevalence of MR-CNS was slightly higher (48%) than that in a similar study in the United States (40%) 359. The present study also showed that the most prevalent CNS species was MR-S. epidermidis. The rate of methicillin-resistance varied between CNS species (Figure 12).

6.4 SCCmec types of CNS (II, III, IV)

6.4.1 SCCmec types in clinical MRSE strains

The study II shows that a single MRSE strain may possess two SCCmec types: SCCmec type IV (or IVA) and IIIA (or IIIB), a phenomenon known to occur also in MRSA. This is supported by several findings. First, the SCCmec patterns (P1, P2, P4 and P6) showed amplicons of the same molecular weight as expected for the loci that would represent two different SCCmec types (Figures 11 and 12), but SCCmec P3 and P6 do not have all the loci which represent the two different SCCmec types. Consistent to this, a SCCmec type IV lacking the dsc gene (locus D) and a SCCmec type III lacking the locus E have been previously reported 233, 360. Second, the results show that the six SCCmec patterns carry two ccr complexes, ccrAB2 and ccrAB3 and all had two mec complexes, class A and class B. None of the SCCmec patterns P1-P6 possessed the transposon Tn554. In accordance with the result, strains carrying multiple ccr complex genes have been encountered 13, 236, 237, 273, 361 and a SCCmec III lacking the Tn554 has been reported in MRSA 233, 312 and MRSE 133. Additionally, the IS1272 and mecI and mecR1 (PB) are not located in the same cassette. The DNA region between ccrA2 and ccrA3 produces an amplicon suggesting that the two probable SCCmec cassettes would be located closely side by side. The hypothesized arrangement of the P1–P6
SCCmec patterns is in agreement with all PCR results, based on the condition that there is an inversion of ccrAB2 (Figure 2 in Study II.). It is also hypothesised that the ccr and mec gene complexes have gone through complex recombination and rearrangement processes, generating novel types of SCCmec elements. When comparing the SCCmec types of MRSE with those that existed in the EMRSA strains at the same time (without paying attention to the epidemiological background), they all share the property of being carriers of SCCmec types; IIIA, IA and IVA in 1991-1992 and III, IIIB and IV in 1997–1998.

6.4.2 SCCmec types in nasal carriage of MR-CNS (III)

The majority of the MR-CNS isolates (62%) possessed a previously known SCCmec type I, IA, II, and IV, while 37% had a variety of new ccr and mec combinations or had only mecA without ccr and mec complexes. The SCCmec type IV was the most prevalent among the S. epidermidis strains (37%; 18/49). The prevalence of SCCmec type IV among the S. epidermidis strains was notable in the early 1970s. Among MR-CNS that carried SCCmec type IV, there were MR-CNS strains that harboured SCCmec type IV (mecA and locus D) and other MR-CNS strains that harboured a modified SCCmec type IV which represent four different multiplex SCCmec patterns (Table 2 and Figures 1 and 2 in Study III). Modified patterns were also found in MR-CNS strains, which were harbouring SCCmec type II that contained the additional locus A and lacked locus B (kdp operon). MR-CNS strains had SCCmec type V, which have four different multiplex SCCmec patterns.

Thirty-seven percent (37%) of the strains harboured a new SCCmec type, some of which are encountered in MRSA. Among these strains, there were ones which carried known SCCmec types with the additional ccr gene (type IV and ccrC or type V and ccrA4). Strains containing both type SCCmec IV and ccrC and strains carrying multiple ccr genes have been reported. Some of our strains carried combinations of ccr and mec that could not be interpreted as belonging to any of the currently described SCCmec types. Only the mecA gene was amplified in other MR-CNS strains. Failure to amplify the ccr and mec class may indicate that the target sequence for primers may have changed. Previous studies have shown that some staphylococcal strains carry ccr complex genes without mec complex genes and vice versa, while some MRSA
strains carry neither ccr nor mec complexes, instead they carry only the mecA gene312, 357, 358, 363.

In this study, the use of the PCR methods for detecting only the sequence in the junkyard regions for SCCmec typing in MR-staphylococci raises some concerns. The junkyard regions do not contain specific loci for a specific SCCmec type. Locus A is present in types II, IV, and V, but previously it was thought to be part of SCCmec type I and IA only. Locus B is present in type V and in three new types, but previously it has been defined to be specific for SCCmec type II. Also, the SCCmec types IV and V contained a variety of loci. Therefore, the detection of these intervening sequences provides valuable additional information on the discrimination of SCCmec types. The results demonstrate the high diversity of SCCmec types in MR-CNS. This finding is concordance with other studies133, 357, 358, 360, 361, 363, 364.

6.4.3 Co-existence of similar SCCmec types in MRSE and MRSA of the same patient

The point prevalence study on nasal carriage of CNS was conducted six months after an outbreak of MRSA in a LTF in Northern Finland in 2004. The MRSA outbreak was caused by a strain that had not been previously encountered in Finland, namely FIN-22 with SCCmec type V. The MRSA nasal carriage of the patients was analysed365 and it showed that each of the five different MRSA strains had SCCmec type V. Two patients carried both MRSE and MRSA strains concurrently and these strains also shared the SCCmec type V (ccrC, class C). However, differences in the J region sequences were identified between MRSA and MRSE strains (additional loci E and A in MRSE) (Table 7). Although we are not able to rule out the possibility that the similar SCCmec cassettes were acquired through different routes, this observation supports the possibility of SCCmec transfer. However, if such a transfer has happened, it was not complete. Further studies revealing the mechanisms of SCCmec transfer are needed. The hypothesis for the transfer of SCCmec between \textit{S. epidermidis} and \textit{S. aureus} has been presented previously320, 326, 361, 366.
6.4.4 SCCmec region in *S. sciuri*

The results showed that the *S. sciuri* strains with only *mecA_S.sciuri* did not carry the *mecI* gene (locus C). In accordance with previous studies, it showed that the presence of *mecI* was always connected to the presence of a copy of *mecA_S.aureus*. This study also revealed *mecR1* and *mecI* adjacent to *mecA* genes of the *S. aureus* type but not adjacent to those of the *S. sciuri* type. Possibly, native *S. sciuri* does not harbour the *mecI* gene. The IS431 or integrated plasmids pUB101 and pT181 (Loci G and H) were sometimes part of the *S. sciuri* genome. The majority of strains (11/15) had recombinase genes (*ccr* –gene). Three regions of SCCmec (loci B, D and F) were not part of the *S. sciuri* genome.
7 CONCLUSION AND FUTURE CONTRIBUTIONS

According to the results, non-multi-resistant MRSA, including community-acquired MRSA strains, harbour genotypes found amongst clinical MSSA strains. These findings suggest that horizontal transfer of SCCmec elements from unknown donor(s) to several MSSA background genotypes has occurred in Finland. Also, some of the MSSA genotypes unrelated to EMRSA or any MRSA encountered in our laboratory data base were now found. It would be of interest to search for integration site (orfX and attR/attL) in the MSSA strains related and unrelated to MRSA, and to compare them to each other in order to understand why some strains acquire the SCCmec and some do not. Moreover, it would be interesting to study the horizontal gene transfer between staphylococcal strains in vitro and in vivo.

Among the clinical MRSE strains, SCCmec elements of two cassette types (III and IV), which seem similar to the SCCmec types of MRSA, were detected. To confirm these findings, the SCCmec regions of these strains should be sequenced.

Among the patients in the LTCF, nasal carriage of MR-CNS was common. A higher variety and frequency of SCCmec types was found in CNS than in S.aureus. Many unknown types were identified amongst the MR-CNS strains. These types have not yet been identified in MRSA. The SCCmec type IV, with a variety of it, was most prevalent among the S. epidermidis strains. Based on the sharing of SCCmec type V between MRSA and MR-CNS, horizontal transfer of SCCmec elements is speculated. Moreover, the MR-S. capitis was the second most common species after S. epidermidis, and it carried all SCCmec types known to date and some new types. Whole genome sequencing of the S. capitis would provide some answers regarding whether the horizontal transfer of genes is happening continuously between these staphylococcal species. The MR-CNS may represent the gene pool for the continuing creation of new SCCmec types from which MRSA might originate. However, it is already known that some parts of SCCmec regions are present in the genome of clinical S. sciuri.
8 THE MAIN FINDINGS

1. The majority of Finnish MSSA and EMRSA strains had the same genomic background.

2. Finnish MSSA strains acquired SCCmec from an unknown source by horizontal gene transfer mechanisms.

3. The SCCmec complexes of bacteremic MRSE strains were unique combinations of elements SCCmec type III and IV.

4. MRSE was the most prevalent CNS species among the residents of the LTCF.

5. A diversity of SCCmec types, with many unknown types were recognized amongst nasal carriage MR-CNS strains.

6. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V by MRSA and MRSE.

7. pls gene was encountered less frequently in the S. sciuri than in S. aureus and some parts of the SCCmec were found in the S. sciuri genome.
9 ACKNOWLEDGMENTS

This study was carried out at the Hospital Bacteria Laboratory, National Public Health Institute (KTL), currently named the National Institute for Health and Welfare (THL). I acknowledge Professor Pekka Puska, MD, PhD, the Director General of THL, Professor Jussi Huttunen, MD, PhD, the former Head of the Institute, Professor Petri Ruutu, MD, PhD, the Head of Department and Professor Pentti Huovinen, MD, PhD, and Professor Tapani Hovi, MD, PhD, the former Heads of Department, for providing excellent research facilities.

The Ministry of Social Affairs and Health, the Päivikki and Sakari Solhberg Foundation, the Paulo Foundation, the Maud Kuistila Memorial Foundation and the University of Helsinki are acknowledged for their financial support during the work.

My gratitude goes to the supervisors of my work, Docent Jaana Vuopio, MD, PhD, and Docent Anni Virolainen-Julkunen, MD, PhD. I am very thankful for the opportunity to work with them in this project, and to learn so much from them. I am also most thankful for their patient efforts to keep my language and punctuation correct.

I do not have enough words to express my gratitude towards my unofficial third supervisor Dr. Saara Salmenlinna, PhD. Her sound advices, vast knowledge in the field and encouraging guidance throughout this work have been of great value to me. Saara has always been optimistic and supportive even during the most difficult moments, and she gave me the confidence to continue till the very end of this project.

I sincerely thank Professor Seppo Meri, MD, PhD, for his valuable support and problem-solving skills as well as for agreeing to be my custos.

My sincere gratitude goes to Docent Hanna Soini, PhD, for her support and encouragement, and the opportunity she gave me to finish my thesis.

I sincerely thank the official reviewers of my thesis, Professor Matti Viljanen, MD, PhD, and Professor Mikael Skurnik, PhD, for their beneficial criticism and valuable comments and suggestions during the final preparation of my thesis.
This study would not have been possible without the co-authors Professor Martti Vaara, MD, PhD, Professor Pentti Kuusela, MD, PhD, Docent Outi Lyytikäinen, MD, PhD, Dr. Katri Juuti, PhD, Dr. Anne-Marie Kerttula, PhD, Dr. Henrik Jägerroos, MD and Dr. Markku Broas, MD. I thank them all for their expertise, flawless cooperation and excellent comments on my papers.

In addition, I thank all the people currently and formerly working at the Bacteriology Unit. I have had the pleasure of working with great people in the various side-projects regardless of whether or not they were included in this thesis.

I want to thank Professor Anja Siitonen, PhD, for being a great person to talk with. In the past nine years that I have known her, not once did she meet me without a smile. I am also most grateful to Docent Susanna Lukanmaa, PhD, for the great friendship, as well as the productive discussions and advice that she offered.

I express my warmest thanks to Lotta Siira, M.Sc., PhD student, whose support and good sense of humour were invaluable. Lotta, thank you for your patience and help with the computer, thank you for translating the abstract to Swedish, thank you for being a great person to talk with and thank you for having always the time to discuss possible solutions.

My heart-felt gratitude goes to Dr. Tuula Siljander, PhD and Milla Pietiäinen, M.Sc., PhD student, for their friendship, for their advices and help with numerous things, as well as for the discussions and for helping me how to proceed with the printing process.

My gratitude goes to all the people in the Hospital Bacteria Laboratory: Elina Sirén, Ritva Scotford, Ani Sarpi, Aila Soininen, Merja Gustafsson, Saija Perovuo, Heidi Husu, Mari Hyvönen, Terhi Vesa, Sanna Laaksonen, M.Sc., Anni Vainio M.Sc., PhD student, Minna Kardén-Lilja, M.Sc., PhD student, Susanna Vähäkuopus, M.Sc., PhD student, for their unforgettable help and all the fun times we had.

I owe a great deal to the people in the Anaerobe Reference Laboratory Saara Kotila, M.Sc., PhD student, Reetta Sihvonen, M.Sc, Dr. Maija Toropainen, PhD, Anne Bryk, Arja Kanervo- Nordström and Anne Rinta-
Opas created a friendly atmosphere in the laboratory. I express my thanks to Dr. Silja Mentula, PhD, for revising the Finnish version of my abstract.

I thank all the people in the Gastrointestinal Infections Laboratory, especially, Aino Kyyhkynen M.Sc, Ritva Taipalinen and Tarja Heiskanen, Dr. Marjut Eklund, PhD and Taru Kauko, M.Sc., PhD student, for the fun times we had.

I owe my deepest thanks to Kirsi-Marja Leskinen for giving me a helping hand whenever I needed it and for answering my questions regarding work-routines and such with great patience. I also thank Kirsi Mäkisalo and Sari Mustala for their kind and skillful secretarial assistance.

I also address my thanks to my beloved siblings in Motherland Libya, USA and Canada who have each in their own way supported and helped me both in scientific work and otherwise, by being a delightful distraction whenever I wanted a moment to breathe.

I address my thanks and dearest thoughts to my two daughters, Heba and Fairouz, who kept the mood light and were both daughters and friends to me. Never running out of tea, coffee, chocolate and cheesecakes helped a lot. My gratitude goes also to my lovely twins, my son Muaad and my daughter Jasmin, who continuously asked about the progress of my thesis, offering cheers and hugs and many laughs. To my husband Dr. Khalid Hussien, MD, thank you for all your patience, understanding and support during these busy years.

Helsinki, June 2010
Salha A. I. Kadura, MD

53. DESCHAMPS CF, LAMBERT N, C; B. Frequency of the pls Gene Detection among Methicillin-Resistant *Staphylococcus aureus* (MRSA) Strains, according to Staphylococcal Cassette Chromosome (SCCmec) Complex Type. Interscience

114. **Calvo J**, Hernandez JL, Farinas MC, Garcia-Palomo D, Aguero J. Osteomyelitis caused by *Staphylococcus schleiferi* and evidence of misidentification of

208. Davies J. Microbes have the last word. A drastic re-evaluation of antimicrobial treatment is needed to overcome the threat of antibiotic-resistant bacteria. *EMBO Rep*. 2007 Jul;8(7):616–21.

218. Antignac A, Tomasz A. Reconstruction of the phenotypes of methicillin-resistant *Staphylococcus aureus* by replacement of the staphylococcal cassette

305. **Tenover FC**, Arbeit RD, Goering RV. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the...

