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Abstract 

Tero Hiekkalinna. On the superior power of likelihood-based linkage disequilibrium 
mapping in large multiplex families compared to population based case-control 
designs. National Institute for Health and Welfare (THL). Research 88/2012. 173 
pages. Helsinki, Finland 2012. 
ISBN 978-952-245-712-7 (printed); ISBN 978-952-245-713-4 (pdf) 
 
In this thesis, we developed software for automated genome-wide linkage and 
linkage disequilibrium analysis based on common gene mapping methods for 
qualitative and quantitative phenotypes. We further developed likelihood-based 
software for joint linkage and/or linkage disequilibrium (LD) analysis in general 
pedigrees based on a novel variation of the classical lod score approach, the so-
called pseudomarker method, and evaluated its statistical properties as compared 
with the existing family-based association methods.  This was done using real-life 
migraine and schizophrenia pedigree structures from Finland. In addition, we 
compared various study designs for association analysis and investigated statistical 
properties of the likelihood ratio test for conditional analysis of LD given linkage. 
 
First, we automated the laborious process of running a variety of genome-wide 
linkage and linkage disequilibrium analysis software packages, including 
ANALYZE, MERLIN, GENEHUNTER, and SOLAR. With this software tool, data 
file format conversion, and running of the analyses are completely automated. This 
tool has been applied to many large genome-wide mapping studies. 
 
Second, we developed user-friendly PSEUDOMARKER software, which performs 
likelihood-based linkage and/or linkage disequilibrium analysis in general pedigrees. 
This software allows for joint analysis of heterogeneous relationship structures, such 
as singletons (i.e. cases and controls), triads, sibships, and large multigenerational 
pedigrees. The performance of this software was evaluated in comparison to the 
existing repertoire of other family-based association methods. 
 
Third, we performed an extensive simulation study to investigate the statistical 
properties (i.e. type-I error and power) of PSEUDOMARKER and other commonly 
used family-based association methods. Our results demonstrate that many widely-
used methods are not valid for testing LD in the presence of linkage, and likelihood-
based methods which can properly account for missing data and individual 
relationships in pedigrees, such as PSEUDOMARKER, outperform the other 
approaches over a wide variety of etiological models. We also demonstrated that 
association mapping in families is far more powerful than in population-based 
samples. 
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Fourth, we investigated the statistical properties of the likelihood ratio test for 
association conditional on linkage when inaccurate parametric models were used. 
Our results showed that while under most situations they perform appropriately 
despite the parametric model being improperly specified, under certain conditions, 
when there is complete linkage between disease and marker loci, overly-
deterministic dominant analysis models can lead to false inferences of LD in the 
presence of linkage when the true etiological model is recessive in character.   
 
In this study, we have developed powerful and easy to use tools for analysis of 
linkage and LD in general pedigrees and unrelated individuals jointly, and have 
demonstrated the superiority of such methods in the general case. Our results 
provide important information for the human genetics community about optimal 
ways to collect and analyze data. 
 
 
Keywords: likelihood-based methods, genome-wide linkage analysis, linkage 
disequilibrium, family-based association, genome-wide association studies, bias, 
type-I error, power, computer software, study design 
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Tiivistelmä 

Tero Hiekkalinna. On the superior power of likelihood-based linkage disequilibrium 
mapping in large multiplex families compared to population based case-control 
designs [Uskottavuus-pohjaisen kytkentäepätasapainokartoituksen suuresta voimasta 
perherakenteissa verrattuna populaatiopohjaiseen tapaus-verrokki asetelmaan]. 
Terveyden ja hyvinvoinnin laitos (THL). Tutkimus 88/2012. 173 sivua. Helsinki, 
Finland 2012. 
ISBN 978-952-245-712-7 (painettu); ISBN 978-952-245-713-4 (pdf) 
 
Tässä väitöskirjatutkimuksessa kehitettiin menetelmä koko perimänlaajuiseen 
automaattiseen kytkentä- ja kytkentäepätasapainoanalyysiin kvalitatiivisilla ja 
kvantitatiivisilla ominaisuuksilla käyttäen yleisiä geenikartoitusmenetelmiä. Lisäksi 
tässä työssä kehitettiin uskottavuuteen perustuva tietokoneohjelma yhdistettyyn 
kytkentä- ja kytkentäepätasapainoanalyysiin perheaineistossa, joka perustuu 
muunnelmaan klassisesta lod score kytkentäanalyysimenetelmästä. Tämän ns. 
pseudomarker-menetelmän tilastotieteellisiä ominaisuuksia verrattiin 
simulaatiotutkimuksella muihin yleisesti käytettyihin perhepohjaisiin 
assosiaatiomenetelmiin käyttäen suomalaisia skitsofrenia ja migreeni 
perherakenteita. Lisäksi vertailtiin erilaisia tutkimusasetelmia assosiaatioanalyysissä 
ja tutkittiin ehdollisen uskottavuusosamäärätestin tilastotieteellisiä ominaisuuksia, 
kun testataan assosiaatiota kytkennän vallitessa 
 
Ensimmäisessä osatyössä automatisoitiin koko perimänlaajuinen kytkentä- ja 
kytkentäepätasapainoanalyysi käyttäen ANALYZE, MERLIN, GENEHUNTER ja 
SOLAR geenikartoitusohjelmia. Tämän tietokoneohjelman avulla aineiston käsittely 
geenikartoitusmenetelmän vaatimaan muotoon ja analyysi on täysin automatisoitu. 
Lisäksi se on mahdollistanut useita automatisoituja laajoja koko perimänlaajuisia 
geenikartoitusanalyysejä. 
 
Toisessa osatyössä kehitettiin käyttäjäystävällinen PSEUDOMARKER-
tietokoneohjelma, joka on uskottavuus-pohjainen yhdistetty kytkentä- ja 
kytkentäepätasapainoanalyysi perheissä. Tämä PSEUDOMARKER-ohjelma 
mahdollistaa erilaisten aineistojen yhdistämisen yhteen ja samaan analyysiin, kuten 
tapauksia, verrokkeja, trioja, ydinperheitä ja suuria usean sukupolven perheitä. 
Lisäksi pseudomarker-menetelmää verrattiin muihin perhepohjaisiin 
assosiaatiomenetelmiin simulaatiotutkimuksella. 
 
Kolmannessa osatyössä vertailtiin laajasti simulaatiotutkimuksella 
PSEUDOMARKER-ohjelman ja muiden yleisesti käytettyjen perhepohjaisten 
assosiaatio-ohjelmien tyypin I virhettä ja tilastotieteellistä voimaa. Tässä 



THL  –- Research 88/2012 10 
Likelihood-based linkage 

disequilibrium mapping in large 
multiplex families  

 

tutkimuksessa havaittiin, että jotkin menetelmät eivät sovellu assosiaatiotestaukseen 
kytkennän vallitessa ja uskottavuus-pohjaiset assosiaatiomenetelmät, jotka pystyvät 
ottamaan huomioon puuttuvaa genotyyppi- tai fenotyyppidataa ja pystyvät 
analysoimaan suuria perherakenteita, kuten PSEUDOMARKER-ohjelma, ovat 
voimakkaimpia erilaisten tautimallien vallitessa. Lisäksi tulostemme perusteella 
assosiaatioanalyysi perheaineistossa on voimakkaampaa kuin tapaus-verrokki 
aineistossa.  

 
Neljännessä osatyössä tutkittiin uskottavuusosamäärätestin tilastotieteellisiä 
ominaisuuksia, kun testataan assosiaatiota kytkennän vallitessa, käyttäen 
epätarkkoja parametrista malleja. Tutkimuksessa havaitsimme, että suurimmassa 
osassa tilanteita epätarkat mallit toimivat moitteettomasti, mutta tietyissä tilanteissa, 
kun täysi kytkentä vallitsee tautilokuksen ja geenimerkin välillä, niin deterministisen 
vallitsevan analyysimallin käyttö ehdollisessa uskottavuusosamäärätestissä (olettaen 
kytkentä) saattaa johtaa väärää johtopäätökseen assosiaatiosta, kun todellinen malli 
on peittyvästi periytyvä. 
 
Tässä väitöskirjatyössä olemme kehittäneet voimakkaan ja helppokäyttöisen 
ohjelman kytkentä- ja kytkentäepätasapainoanalyysin perheissä ja tapaus-verrokki 
aineistossa. Lisäksi olemme osoittaneet vastaavien menetelmien ylivoimaisuuden. 
Tutkimuksemme tulokset antavat tärkeää tietoa ihmisgenetiikan tutkijoille parhaista 
tavoista kerätä ja analysoida aineistoa.  
 
 
Avainsanat: uskottavuus-pohjaiset menetelmät, koko perimän laajuinen 
kytkentäanalyysi, kytkentäepätasapaino, perhe-pohjainen assosiaatio, koko perimän 
laajuinen assosiaatiotutkimus, vinouma, tyypin I virhe, voima, tietokoneohjelma, 
tutkimusasetelma 
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Abbreviations 
 
DNA Deoxyribonucleic acid 
 
GWAS Genome-wide association study 
 
HWE Hardy-Weinberg equilibrium 
 
HRR Haplotype relative risk 
 
HHRR Haplotype-based haplotype relative risk 
 
IBD Identity-by-descent 
 
i.i.d. independent and identically distributed 
 
LD Linkage disequilibrium 
 
LR Likelihood ratio 
 
LRT Likelihood ratio test 
 
MLE Maximum likelihood estimate 
 
RR Relative risk 
 
SNP Single nucleotide polymorphism 
 
TDT Transmission/Disequilibrium test 
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Symbols  
 

 Disease prevalence 
 

 Disease allele frequency 
 

 Gametic linkage disequilibrium coefficient 
 
D’ Lewontin’s D’ (D-prime) 
 

 Pseudomarker linkage test statistic 
 

 Pseudomarker LD given linkage test statistic 
 

 Pseudomarker LD given no linkage test statistic 
 

 Pseudomarker linkage given LD test statistic 
 

 Pseudomarker joint linkage and LD test statistic 
 

 Recombination fraction 
 

 Squared correlation coefficient 
 

 Significance level 
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1 Introduction 

Over the last few decades human geneticists have characterized thousands of genetic 
variants which influence human traits, ranging from severe Mendelian diseases to 
normal quantitative variation in traits such as the serum levels of different proteins 
(Comuzzie, Hixson et al. 1997). Classical genetic studies investigated highly 
penetrant Mendelian traits in large pedigrees, often ascertained from isolated 
populations, in which the inheritance of traits across generations was studied. 
However, in the last few years, some focus has shifted from Mendelian traits to 
complex traits, and large pedigrees studies have given way to cross sectional studies. 
A complex trait, by definition, has unknown etiology, but is often presumed to be 
influenced by a large number of genetic variants with small effects and a large 
number of environmental factors, often related to nutrition and lifestyle. Common 
complex traits, such as diabetes, cardiovascular disease, and obesity have a major 
impact on public health, and therefore there is great interest in unravelling their 
architecture. Nevertheless, cross sectional studies, even with thousands of 
individuals and hundreds of thousands of genotyped markers have proven to be 
relatively uninformative and even such enormous studies are therefore often 
euphemistically referred to as “underpowered” implying the solution lies in even 
larger samples (Spencer, Su et al. 2009).  
 
Technological advances in molecular genetics have made it possible to generate 
large amounts of genotype and DNA sequence data, and parallel developments in 
microprocessor technology have completely revolutionized the possibilities for 
statistical computing. Statistical theory in genetics, as developed in the early 20th 
century, is implemented today in computer programs developed by scientists all over 
the world. Popular program packages, which are used for analyzing population-
based samples can mostly analyze cross sectional (i.i.d.) data only. Furthermore, as 
the cost of whole genome sequencing becomes affordable, and the error-rates 
become tolerably low, studies are beginning to sequence related individuals in 
families, a trend that is likely to continue in populations with good genealogical 
records like Finland. This will require additional analytical expertise from young 
researchers, as many students and postdocs today have only been trained to analyze 
unrelated samples, rather than individuals in families. Eventually, all individuals in 
the population are likely to be sequenced for screening of Mendelian risk variants, at 
which time the family information from our population registers can be used to trace 
the segregation of shared genomic segments through the population. This can be 
linked with available phenotypic data in Finland, where numerous health-related 
databases of phenotypic information and family relationships are available, such as 
FINRISK (Vartiainen, Jousilahti et al. 2000), the Northern Finland Birth Cohorts 
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(NFBC66 and NFBC86) (Rantakallio 1969; Jarvelin, Hartikainen-Sorri et al. 1993), 
HEALTH 2000 (Aromaa, Koskinen et al. 2004), the Finnish Twin Registry (Kaprio, 
Sarna et al. 1978),  COROGENE: The Genetic Predisposition of Coronary Heart 
Disease in Patients Verified with Coronary Angiogram (Vaara, Nieminen et al. 
2011), and The Cardiovascular Risk in Young Finns Study (Raitakari, Juonala et al. 
2008). These enormous amounts of data will require intelligent and automated 
approaches to analysis. 
 
Currently, there are hundreds of statistical analysis programs available for 
geneticists, which implement a wide variety of mapping methods. In a typical 
mapping study, scientists apply several programs, because none of them can perform 
all the desired analyses. In this study, we have automated the process of using 
various packages in large genome-wide scans, developed software for linkage and 
LD-based mapping in pedigrees, evaluated the statistical properties of commonly 
used family-based methods, and investigated the relative efficiency of a variety of 
mapping strategies.   
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2 Review of the literature 

2.1 The human genome 

 
The human genome is composed of a sequence of approximately 3.17 billion base 
pairs (The Genome Reference Consortium, assembly GRCh37.p7) (The Genome 
Reference Consortium 2012) of double stranded deoxyribonucleic acid (DNA), 
organized into 23 pairs of chromosomes. Normally, each individual receives one 
copy of each of the 22 autosomes from each parent along with a sex chromosome. 
There are two sex chromosomes; X and Y, such that an individual with two X 
chromosomes would be female and an individual with one X and one Y 
chromosome would be male. Only a small fraction, 1.5%, of the genome is known to 
be protein coding sequence, while the function of the rest is not well understood 
(International Human Genome Sequencing Consortium 2004), however there are 
known functional non-protein-coding ribonucleic acids (ncRNAs), which are 
supporting protein translation (Birney, Stamatoyannopoulos et al. 2007).  

2.1.1 Genetic linkage 

 
Genetic linkage is the result of a physical phenomenon, where large chromosomal 
segments are inherited intact from parents to offspring, disrupted occasionally by 
crossovers that occur in meiosis. A crossover refers to an exchange of DNA 
segments between an individual’s pair of homologous chromosomes in meiosis 
(Figure 1). The genetic map distance between two loci on the same chromosome 
(syntenic loci) is measured in terms of the expected number of crossovers between 
them per meiosis (measured in Morgans). This genetic distance between loci cannot 
be directly predicted from the physical distance between them, because the 
frequency of crossovers along each chromosome varies tremendously from region to 
region. Furthermore, the relationship between physical distance and frequency of 
recombination also varies with both age and sex of the parent in which the meiosis 
occurred. On average there are about 27 crossovers per meiosis in spermatogenesis 
and about 42 in oogenesis (Chowdhury, Bois et al. 2009). Alleles of loci which are 
closely linked on the same chromosome are more likely transmitted together in 
meiosis, than those which are on opposite ends of the same chromosome or on 
different chromosomes (non-syntenic loci) (Sham 1998). This property forms the 
basis of genetic linkage analysis, in which segregation patterns of known marker 
loci are compared with inferred segregation patterns of putative genetic variants 
influencing the trait of interest. 
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Figure 1: Crossing over in meiosis. (A) A pair of homologous chromosomes 
(paternally and maternally derived), with three polymorphic loci shown with 
haplotypes ABC and abc. (B) Chromosome duplication. (C) Crossing over 
between homologous chromosomes. (D) Recombinant chromosomes are formed 
with haplotypes ABc and abC. 
 

2.1.2 Genome-wide linkage scan 
 
In a classical hypothesis-free genome-wide linkage scan, the segregation of a large 
number of polymorphic marker loci spanning the entire length of the human genome 
is investigated in families. In such genome-wide screens, the genomic location of a 
putative trait locus is not known and co-segregation of each marker locus with the 
disease locus is tested, where disease locus genotypes are inferred from phenotypes 
using some sort of probabilistic inheritance model. These models may be dominant 
or recessive, for example. In a dominant model, one copy of the disease allele can 
increase disease risk by itself, where under a recessive model two disease alleles 
would be required to increase risk of disease. A typical linkage study can contain a 
few large pedigrees or hundreds of smaller nuclear pedigrees, in which multiple 
related individuals share some phenotype of interest. Phenotypes can be qualitative 
traits (affected or unaffected with some disease) or they can be quantitative traits 
related to normal variation such as bone mineral density (Styrkarsdottir, Cazier et al. 
2003), serum levels of different proteins, or total fat mass (Comuzzie, Hixson et al. 
1997). For example, linkage analysis has been a powerful method for localizing 
disease alleles with large effects such as cystic fibrosis (Tsui, Buchwald et al. 1985), 
Huntington’s disease (Gusella, Wexler et al. 1983), Duchenne muscular dystrophy 
(Murray, Davies et al. 1982), and many rare diseases in Finland (Peltonen, Jalanko 
et al. 1999). 
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2.1.3 Linkage disequilibrium 
 
When a mutation occurs in the DNA sequence, this newly created sequence variant 
(or allele) is only found on the single haplotype where it arose. As the allele 
segregates through the population, the length of the shared haplotype decays slowly 
over time due to recombination. This allele, therefore, will not occur independently 
of the alleles at very tightly-linked loci, as they co-segregate in the population over 
many generations. This nonindependence of alleles occurring on haplotypes is 
referred to as linkage disequilibrium (LD), which decays over time as rare 
recombination events occur (Ott 1999). 

2.1.4 Genome-wide association scan 
 
Recent technological achievements resulting in a dramatically reduced cost of large-
scale genotyping have made possible genome-wide association studies (GWAS) 
with hundreds of thousands or even millions of single nucleotide polymorphisms 
(SNPs) spanning the genome. GWAS was motivated by the ‘common disease-
common variant’ (CD/CV) hypothesis (Reich and Lander 2001), where common 
disease variants could have a role in common diseases. In such studies, these SNP 
markers are examined in a large (typically population-based) sample of thousands of 
individuals, for example see the Wellcome Trust Case Control Consortium 
(WTCCC 2007). The method is based on the idea that, when large numbers of SNP 
markers are analyzed over the genome, one or more of these SNPs might be in LD 
with any disease-predisposing allele. This is likely because most of sequence 
variants were once created by mutations occurring on single haplotypes deep in 
evolutionary history. Therefore, if recombination has occurred only rarely between 
adjacent loci around such a variant, then significant LD will remain over a small 
region (Hartl and Clark 2007). Although LD mapping in unrelated individuals is 
currently in fashion, association analysis is typically more powerful in families, 
though they can be more difficult to ascertain in outbred populations. So far these 
large cross-sectional GWA studies have only found a relatively small number of 
variants which explain a fairly large percentage of the genetic contribution to these 
common complex phenotypes (Visscher, Brown et al. 2012). 
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2.2 Statistical testing in linkage and association analysis 
 
In human genetics, gene mapping is almost exclusively based on statistical inference, 
which allows us to evaluate if the disease locus and the marker locus are correlated. 
One basis for developing statistical tests is to use likelihood functions, which are 
introduced below. 

2.2.1 Likelihood and likelihood ratio test 
 
The likelihood of a set of data under a given hypothesis is , which is 

proportional to the probability of the data given parameters in  : 
 
 . 

 
The method of maximum likelihood tries to find numerical values for the parameters 
in  which maximize the likelihood function (Fisher 1922), the so-called  

maximum likelihood estimates (MLE) of those parameters.  
 
The exact value of the likelihood function is not meaningful by itself, but rather 
what is of interest is the ratio of likelihoods under null and alternative hypotheses 
(i.e. how many times more likely is the data under the alternative hypothesis than 
under the null). Therefore we evaluate the likelihood ratio as 
 

,  

 
where H0 is the null hypothesis, and the alternative hypothesis is HA. This ratio 
forms the basis for the likelihood ratio test (LRT). LRTs have been increasingly 
popular in the era of computing because according to the Neymann-Pearson lemma 
(Neymann and Pearson 1933), if there exists a most-powerful test of a given 
hypothesis, it would be of the form of a likelihood ratio test  Asymptotically, under 
certain regularity conditions, the statistical distribution of the LRT is well-known. 
Wilks’ theorem states that, if sample size approaches , then  is 

asymptotically distributed according to a  distribution with k degrees of freedom 

(where k is the difference in the number of free parameters between HA and H0) 
(Wilks 1938).  
 
When the regularity conditions of Wilks’ theorem are not met, the distribution of the 
test statistic can be rather complicated (Davies 1977). Such problems arise, for 
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example, when the likelihood is a function of more parameters under the alternative 
hypothesis than under the null, or when the null hypothesis occurs at a boundary 
value for a parameter. In such cases, the statistical distribution of the LRT is often 
approximated by a mixture of  distributions and sometimes a point-mass at 0 

(examples of this will be pointed out later).  
 
Likelihoods can be used for evaluating a probability model, which describes known 
correlations among individuals in a data set. Then the likelihood can be maximized 
over admissible values of the parameters of the probability model. One attractive 
feature of maximum likelihood estimation is that some of the parameters, such as 
allele frequencies, can be treated as nuisance parameters, which are estimated 
separately under both the null and alternative hypothesis, without changing the 
degrees of freedom. 

2.2.2 The lod score 

 
If two loci are very closely linked on the same chromosome, it is highly unlikely that 
recombination will occur between them in any given meiosis. The probability of 
recombination in a given meiosis is called the recombination fraction, θ, which 
ranges on 0 ≤ θ ≤ 0.5 in humans (some polyploid species can have  (Wright, 

Johnson et al. 1983)). The recombination fraction between two unlinked or non-
syntenic loci is θ=0.5. The goals of linkage analysis are to estimate the 
recombination fraction between two loci and test the null hypothesis that   

 
Historically, the idea of testing for linkage by using the likelihood ratio was 
proposed by Haldane and Smith (Haldane and Smith 1947), and the lod (“logarithm-
of-odds”) score for statistical inference was introduced by Barnard (Barnard 1949). 
The linkage test statistic, the lod score, was formulated in terms of the common 
logarithm ( ) of the likelihood ratio. The lod score statistic was introduced in 

genetic analysis by Smith (Smith 1953) and Morton (Morton 1955) as 
 

  

 
The traditional threshold for significance testing was proposed by Morton (Morton 
1955) to be Z > 3, corresponding to a pointwise p-value of 0.0001 asymptotically (p-
value is discussed in section 2.2.3).  When the lod score is maximized over the 
recombination fraction (Zmax) on the range then 

is asymptotically distributed as a 50:50 
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mixture of a point mass at 0 and , because the test is performed in a one-sided 

manner (θ cannot exceed 0.5).  In a genome-wide linkage scan with an infinitely 
dense marker map, a lod score threshold of 3.3 has been shown to correspond 
roughly to a genome-wide false positive rate of 5%, (i.e. corrected for multiple 
testing (Lander and Kruglyak 1995)).  
 
Linkage and LD are correlations between alleles of linked loci and have nothing to 
do with trait phenotypes. The relationship between the trait phenotypes and the 
putative underlying (unknown) risk genotypes is always modeled probabilistically. 
In most cases, one models disease loci as having two alleles: a disease-predisposing 
allele D and a wild-type allele +, because for rare Mendelian disorders, it is highly 
unlikely that multiple alleles would be segregating in any single pedigree. However, 
there are almost always multiple variants in every disease locus in the population 
(Terwilliger and Weiss 1998). The genotype phenotype relationship is modeled 
then in terms of the conditional probabilities of having the disease phenotype given 
each possible disease locus genotype (i.e. penetrance functions). 

2.2.3 The p-value 

 
The significance of a statistical test is typically measured with a p-value, which is a 
probability of obtaining the same or more extreme value for the test statistic when 
H0 is true. The p-value can be determined from the sampling distribution of the test 
statistic under H0. A type-I error occurs when the test rejects H0 although Ho is true, 
and a type-II error occurs when the test fails to reject H0 when Ho is false. The 
power of a test is a probability of rejecting H0 when H0 is not true (Table 1). The 
choice of the significance level (denoted with α) for any given test is fairly arbitrary, 
based on some a priori decision about how many false positive results we would be 
willing to accept. For example, if we use α=0.0001 (one out of every ten thousand 
tests would give a positive result even if there were no true signal), and our test 
statistic give a p-value ≤ α, then we would declare our test results to be statistically 
significant and reject H0. 
 
Table 1. Type-I, type-II, and power, where H0 is the null hypothesis. 

True state of nature 
Statistical decision 

H0 true H0 false 

Reject H0 
Type-I error, 
False positive 

Power, 
True positive 

Do not reject H0 True negative 
Type-II error, 
False negative 
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2.3 Linkage analysis of qualitative traits 
 

The purpose of linkage analysis is to test whether two loci co-segregate in meiosis 
more often than expected by chance. In such an analysis, one tries to determine 
whether offspring have inherited non-recombinant or recombinant gametes from 
their parents. In Figure 2, a three-generation pedigree is shown with known 
genotypes of two loci for each individual. The vertical line between the genotypes 
indicates the phase of the alleles, meaning which alleles that individual received in 
each parental gamete. Four children in this pedigree received non-recombinant 
gametes from their father (denoted with N), while one child received a recombinant 
gamete from him (denoted with R). This can be determined with certainty because it 
is clear that the father received alleles 2 and D from his father and alleles + and 1 
from his mother, but he has transmitted alleles + and 2 to the 5th child, which he 
himself had received from different parents (hence, a “re-“combination). If the loci 
were unlinked, then in expectation, 50% of gametes would be non-recombinant and 
50% recombinant. However, if two loci are linked, non-recombinant gametes should 
be more frequent.  

 
Figure 2. Three-generation pedigree illustrating co-segregation and 
recombination. Each individual has alleles of two loci shown where the first 
locus has alleles D and +, and the second locus has alleles 1, 2, 3 and 4. A 
vertical line between the loci indicates that the phase is known, i.e. father with 
genotypes +/D and 1/2 has phase + 1 and D 2 because he received alleles + and 1 
from his mother and alleles 2 and D from his father. In the third generation 
each recombinant meiosis from the father is indicated with R and each non-
recombinant meiosis with N. The mother is homozygous at the first locus and 
therefore the recombination status of her gametes cannot be classified. 
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If recombinant and non-recombinant offspring can be counted as in Figure 2, then 
the likelihood of the data would be 
 
 , 

 
where the constant K contains the segregation probabilities, genotype probabilities 
for the (genotyped) founders, and combinatoric terms (i.e. binomial coefficients). 
Because this constant K is identical in both numerator and denominator of the 
likelihood ratio, it can be factored out, and thus its value is irrelevant and need not 
be computed. The number of recombinant offspring, R=1, and the number of non-
recombinant offspring, N=4. The lod score statistic for the pedigree in Figure 1 can 
be computed as  
 

 

 
Now, the lod score can be maximized over recombination fraction and it turns out 

that Zmax is obtained when  = 1/5 = 0.2. The lod scores can be 

summed over all pedigrees in an analysis for each fixed set of parameter values 
(including the model parameters and the recombination fraction). Linkage analysis 
can be performed one marker at time (two-point linkage), or with multiple markers 
jointly (multipoint linkage), as first automated by Lathrop et al. (Lathrop, Lalouel et 
al. 1984). 
 

2.4 Association analysis of qualitative traits 
 
Linkage analysis can be only performed in families, because the method tests 
whether the alleles of two or more loci co-segregate more often than expected by 
chance. In association analysis using a case-control design, study subjects are 
assumed to be ‘unrelated’- that is to say their genotypes are assumed to be 
independent and identically distributed (i.i.d.). However, the power of the method is 
reliant on the assumption that affected individuals are distant relatives, who are 
connected to each other by an unknown number of historical meioses, and share 
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clonal risk alleles identical by descent (IBD) through a single historical lineage. In 
Figure 3 this unknown pedigree structure is indicated by dotted lines. Linkage 
analysis tests for co-segregation in directly observed meioses within families, as 
indicated by solid lines, while LD analysis tests for co-segregation in unobserved 
historical meioses on the assumption that a single lineage for the risk alleles exists 
although its specific gene genealogy is unknown (Sham 1998; Terwilliger and 
Göring 2000).  
 

 
 
Figure 3. Linkage analysis uses families where the relationships between 
individuals are known (solid lines), while LD analysis is essentially linkage 
analysis in the enormous pedigree of unknown structure connecting these 
individuals together historically (dotted lines), resulting in shared haplotypes 
across observed pedigrees. The dotted lines connect the individuals we 
implicitly assume are distant relatives, with an unknown number of meioses 
connecting them. 
 

2.4.1 Definition of linkage disequilibrium 
 
Let us assume that we have two loci with alleles A and a at the first locus and alleles 
B and b at the second, allele frequencies P(A), P(a) = 1 - P(A), P(B), and P(b) = 1 – 
P(B), and haplotype frequencies P(A B), P(A b), P(a B), and P(a b) = 1 – P(A B) - 
P(A b) - P(a B). Alleles of the two loci are said to be in LD if the haplotype 
frequency deviates significantly from the product of the allele frequencies, i.e. P(A 
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B)≠P(A)P(B). We can quantify this nonindependence as P(A B)=P(A)P(B) + δ, 
where δ is the gametic linkage disequilibrium coefficient (Lewontin and Kojima 
1960). Because the range of δ is dependent on allele frequencies, its numerical value 
is not particularly meaningful. For this reason, geneticists prefer to work with more 
easily-interpretable measures of LD, whose meanings are not allele-frequency 
dependent. One such measure for LD is Lewonti’s D’ (Lewontin 1964), which is 
defined as  
 

 . 

 
The range of D’ is -1 ≤ D’ ≤ 1, but usually the absolute value of D’ is used, i.e. |D’|, 
because the sign depends only on the arbitrary labeling of the alleles. If two loci are 
in linkage equilibrium (LE), then D’=0, while when a new allele first arises in the 
population by mutation, it is always on a single haplotype such that |D’|  1 with 
every other locus in the genome, after which, in a large expanding population it 

decays each generation according to the equation , where k is the 

number of generations (Lewontin and Kojima 1960).  
 
Another increasingly popular measure of LD is the squared correlation 
coefficient, , which measures how well the alleles of 

either locus can be predicted from the other.  This is often used in the GWAS era to 
measure power, in that in order to detect association between marker and disease 
loci with < 1, one would need to increase the sample size by roughly a factor of 

(Gabriel, Schaffner et al. 2002). Therefore,  and D’ do not measure the same 

thing.  For example, |D’|=1 in the case of a very recent mutation, but the value of  
is typically close to 0, because although the presence of the new allele predicts well 
what allele is present at the second locus, the allelic state of the second locus has 
almost no predictive value about the presence of the new allele. Alleles of two loci 

must be of similar frequency in order to have high  (Hartl and Clark 2007), and 
therefore  is of less utility in population genetics than it is in epidemiology as its  
value is uninformative about population history. 
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2.4.2 Cases and controls (singletons) 
 

The simplest design to study allelic association is to collect a random sample of 
affected cases and unaffected controls from some population. If a locus has an allele 
(or alleles) which have an effect on the disease outcome, then the allele frequencies 
would be expected to be different between affected and unaffected individuals in the 
population (Sham 1998).  
 
Let Ph represent the observed phenotype of a given individual, GM - the observed 
marker genotype (with alleles 1 and 2), and GD - the underlying unobserved disease 
locus genotype (with alleles D and +). The conditional probability of the observed 
phenotype given each possible disease locus genotype are called 
penetrances,  and the disease locus genotype frequencies are . The 

conditional probability of the marker genotypes given each possible disease locus 
genotype is , which is a function of  the marker locus genotype 

frequencies in the population and linkage disequilibrium between the disease and 
marker loci.  That is to say, for a random individual  

 and , 

assuming the Hardy-Weinberg equilibrium (HWE) (Hardy 1908; Weinberg 1908) at 
the marker locus, where , etc. The likelihood of the data can 

thus be computed as a function of linkage disequilibrium between marker and 
disease locus genotypes as 
 

 
 
The likelihood under the null hypothesis of no linkage disequilibrium would be 
computed assuming  and , while 

under the alternative hypothesis the conditional allele frequencies would be 
estimated freely. 
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2.4.3 Family-based association  
 
While sampling unrelated singletons from the population is quite simple, it can be 
sensitive to various sampling biases, such as population stratification. One approach 
to avoid this is to use non-transmitted alleles from the parents of an affected child as 
control alleles, because non-transmitted alleles are well matched, as they come from 
the homologous chromosomes of the same parent. A method based on this idea is 
the (genotype-based) haplotype relative risk (HRR) (Rubinstein, Walker et al. 1981). 
An HRR sampling unit is a triad, consisting of two parents and one affected 
offspring. In this approach, the affected child contributes one case genotype and the 
two non-transmitted alleles from the parents contribute one “cohort” genotype 
(Ahsan, Hodge et al. 2002). A more powerful (in the presence of HWE) version of 
this is the haplotype-based haplotype relative risk (HHRR) (Terwilliger and Ott 
1992), which compares alleles rather than genotypes. The HHRR is likewise a test 
of linkage disequilibrium, which is only powerful in the presence of linkage. 
 
The HRR can also be formulated as a paired-sampling McNemar test (McNemar 
1947), in which case only transmission from heterozygous parents would be 
analyzed. This censoring of information from homozygous parents provides 
protection from false positives when HWE does not hold at the marker locus, at a 
nontrivial cost, however, in terms of power if HWE does, in fact, hold (Terwilliger 
and Ott 1992). A test of the same algebraic form, based on paired sampling was 
introduced as the transmission/disequilibrium test (TDT) of linkage by Spielman et 
al (Spielman, McGinnis et al. 1993), which is powerful only in the presence of LD. 
The TDT test was designed to be applied to alleles transmitted from all 
heterozygous parents to all affected offspring, treating all such transmissions, even 
to siblings from the same parent, as independent observations.  In this case, the TDT 
is a valid test of linkage, which is more powerful in the presence of linkage 
disequilibrium, but a significant TDT does not imply that there must be LD 
(Spielman and Ewens 1996; Göring and Terwilliger 2000).  
 
While HHRR and TDT only count non-transmitted and transmitted alleles in triads, 
we can also compute the full likelihood in general family data as 
 

 

 
except that now  is a vector of phased disease locus genotypes, GM is a vector of 

phased marker locus genotypes, and Ph is a vector of observed phenotypes for all 
individuals in a pedigree jointly, and P(GD) is a function of disease locus genotype 
frequencies for founders, and Mendelian transmission probabilities for all other 
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individuals, conditional on their parent’s genotypes. is a function of 

linkage disequilibrium parameters (i.e. conditional allele frequencies) in the 
unrelated pedigree founders, and is a function of the segregation probabilities and 
recombination fraction between disease and marker loci for all other individuals in 
the pedigree, conditional on disease locus alleles in vector . The “case” and 

“control” alleles in such family-based analysis retain the desirable property of the 
HHRR design that they derive from the same set of individuals who are clearly part 
of the same “breeding population”. 
 
In Figure 4, one affected sib-pair is shown with each individual genotyped at one 
marker locus. In order to compute the likelihood of the data, observed phenotypes 
must be probabilistically related to disease locus genotypes using some inheritance 
model. If we assume the model {

}, then both affected offspring must have genotype 

D/D and both unaffected parents must have genotype D/+ (Figure 4B).  
 

( ) 0.001DP D p= = , ( | / ) 1P Affected D D = , 
( | / / ) 0.P Affected D or+ + + =
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Figure 4: (A) An affected sib-pair with genotypes of one marker locus is shown. 
(B) Disease locus genotypes uniquely inferred from inheritance model 
{  } (C) Two 

possible phases for the mother, where phase I is D 1/+ 2 (both offspring 
recombinant) and phase II is + 1/D 2 (both offspring non-recombinant).   
 
 

0.001Dp = , ( | / ) 1P Affected D D = , ( | / / ) 0.P Affected D or+ + + =
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However, we do not know the phase of these genotypes in the mother, since she is 
heterozygous at both loci, and therefore we must analyze the data allowing for the 
possibility of each possible phased genotypes for her (Figure 4C), i.e. phase I: D 1/+ 
2 or phase II: + 1/D 2, such that the likelihood of this pedigree is 
 

 

 
where under both phases  and 

 are the segregation probabilities for a child having disease locus genotype 

D/D given that both parents are D/+. , because for the 

two affected children penetrances are and for the unaffected 

parents, the penetrances are The 

probability of the marker genotypes conditional on the inferred disease genotypes 
under phase I, where the mother transmits a recombinant gamete, D 2, to both of her 
offspring, is 

 

 
 

 
where, for example, , etc (where ), and θ is the 

recombination fraction. However, under phase II, the D 2 gamete would be non-
recombinant, such that 
 

 
 
Now, the total likelihood is 
 

 

 
which is evidently a function of both linkage disequilibrium between the alleles of 
the loci, and the recombination fraction between marker and disease loci.  
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2.4.4 Family-based association programs 

 
There have been a great number of statistical methods and associated software 
packages developed for family-based association analyses (cf. (Ott, Kamatani et al. 
2011)). Most algorithms can only efficiently utilize homogenous relationship 
structures, such as triads, sib-pairs or nuclear families, and only a few of these 
methods can jointly test for both linkage and LD. None of those software packages 
is fully satisfactory when it comes to: 1) combining various relationship structures 
(singletons, triads, sib pairs, large nuclear families, and extended pedigrees) into one 
analysis; 2) using all the information from extended pedigrees; 3) allowing for 
missing genotype data; and 4) testing for LD conditional on linkage. Some of the 
most commonly used programs are briefly introduced below. 

2.4.4.1 GENEHUNTER TDT 

 
GENEHUNTER (Kruglyak, Daly et al. 1996; Kruglyak and Lander 1998) is a 
multipurpose program for parametric and non-parametric linkage analysis. It also 
implements the classic TDT (Spielman, McGinnis et al. 1993) test of linkage, which 
is more powerful in the presence of LD. 

2.4.4.2 PLINK 

 
PLINK (Purcell, Neale et al. 2007) is a feature rich program for genome-wide 
association analysis of population-based samples. In addition, it implements 
rudimentary methods for family-based association studies, including the classic TDT 
and a variant of this test called parentTDT, which incorporates parental phenotype 
information. In this method, the alleles in affected vs. unaffected parents are counted, 
treating parents of a nuclear family as a matched pair. These counts are then 
combined with the classic TDT’s transmitted and non-transmitted allele counts. 

2.4.4.3 QTDT 

 
QTDT (Abecasis, Cardon et al. 2000; Abecasis, Cookson et al. 2000) is a program 
which implements a TDT-type test for general pedigrees. The main difference 
between this and the classic TDT is that it accounts for the kinship coefficient 
between family members. The kinship coefficient is the probability that (under the 
null hypothesis of no linkage and no LD) a random allele drawn at random from 
each of two individuals at the same locus will be IBD (Wright 1922). In QTDT, the 
measure of allelic transmission is the difference between the observed genotype 
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score and the expected genotype score, where the kinship coefficient is used in 
computing the expected genotype score. If there are multiple affected offspring in a 
family, transmission from parents to all offspring are treated as a single unit. 

2.4.4.4 FBAT 
 

The FBAT (Laird, Horvath et al. 2000; Rabinowitz and Laird 2000) program 
implements a TDT-type test for nuclear families, which allows association testing in 
the presence of linkage by using minimal sufficient statistics (Lake, Blacker et al. 
2000). If pedigree data contains multigenerational families, those are decomposed to 
nuclear families which are treated as if they were independent in the analysis.  

2.4.4.5 TRANSMIT 
 

The TRANSMIT (Clayton 1999) program implements a TDT-type test for nuclear 
families. According to the author, it allows for multiple affected offspring, missing 
genotype data and can be used for association testing in the presence of linkage by 
using a robust variance estimator. Like FBAT, it decomposes multigenerational 
families into nuclear families and treats them as if they were independent in the 
analysis and ignores parental phenotypes. However, unlike FBAT, when there is 
missing parental genotype data, TRANSMIT attempts to infer all compatible 
genotypes for parents if there are additional unaffected or unaffected siblings in the 
family and averages over all compatible configurations of the data.  

2.4.4.6 UNPHASED 
 

UNPHASED (Dudbridge 2008) is similar to TRANSMIT in how it treats 
multigenerational families, it allows testing association in the presence of linkage, 
and allows for missing data. In contrast to TRANSMIT, UNPHASED can 
incorporate unrelated subjects in the analysis. However, unrelated individuals and 
nuclear families are treated as separate samples in the likelihood computation, such 
that HWE is assumed for the singletons. 

2.4.4.7 MENDEL 

 
MENDEL (Lange, Cantor et al. 2001) is a comprehensive software package for 
linkage and association analysis of qualitative and quantitative traits. Cantor et al. 
(Cantor, Chen et al. 2005) introduced a parametric maximum-likelihood-based 
option in MENDEL to model joint linkage and association analysis in full pedigrees. 
In this option, MENDEL estimates the recombination fraction and the conditional 
frequencies of the disease allele given each marker allele P(D|1,2,...,n), such that the 
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constraint is forced and the population allele frequency pi of each 

marker allele i is fixed. These marker allele frequencies can be estimated from the 
data using other options of MENDEL. MENDEL also implements a so-called 
“gamete-competition” model (Sinsheimer, Blangero et al. 2000), which is a TDT-
type test of linkage in pedigrees, whose power increases with increasing LD. 

2.4.4.8 LAMP 
 

LAMP (Li, Boehnke et al. 2005; Li, Boehnke et al. 2006) is a maximum-likelihood-
based program for joint linkage and association analysis in general pedigrees, which 
allows association testing conditional on linkage. The method uses the Lander-
Green-algorithm (Lander and Green 1987) for the likelihood computation and 
therefore can only analyze relatively small pedigrees in a reasonable time. LAMP 
assumes complete linkage between disease and marker loci, and estimates marker 
allele frequencies, haplotype frequencies and disease model parameters jointly, 
conditionally on assumed disease prevalence . Estimation of such disease model 

parameters can be constrained to recessive, dominant, additive or multiplicative 
models, or penetrances can be estimated freely, with the constraint that prevalence in 
the population would be  
 

  

 
However, such models estimated from nonrandomly ascertained data are typically 
biased, so caution should always be used. 
 

2.4.4.9 PSEUDOMARKER 
 

Likelihood-based joint linkage and LD analysis had already been performed almost 
two decades ago (Tienari, Terwilliger et al. 1994; Trembath, Clough et al. 1997; 
Kainulainen, Perola et al. 1999; Enattah, Sahi et al. 2002). For example, the linkage 
analysis software package LINKAGE (Lathrop and Lalouel 1984) and the 
segregation analysis package PAP (Hasstedt 1982) have included the capability to 
jointly model linkage (recombination fraction), and LD (with disease-marker 
haplotype frequencies) since the 1980’s. Göring and Terwilliger (Göring and 
Terwilliger 2000) introduced a unified theoretical model for joint linkage and/or 
linkage disequilibrium analysis, which allows joint analysis of singletons, triads, 
nuclear families and extended pedigrees, which is stochastically equivalent to the 
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classic model-free methods for LD and linkage analysis (Göring and Terwilliger 
2000).  
 
In this method, each individual is assigned an artificial ‘pseudomarker’ locus 
genotype with alleles D (disease allele) and + (wild-type allele), based on the 
observed disease phenotypes. The idea of this assignment is to make all meioses 
which connect affected individuals together informative for linkage, such that they 
share as many pseudomarker alleles IBD as possible. Furthermore, if large pedigrees 
with multiple affected individuals are ascertained, this would be because of an 
implicit assumption that affected individuals share a common genetic risk factor 
affecting the disease phenotype.  Therefore, co-segregation of these pseudomarker-
genotypes with some genomic region would be consistent with linkage under this 
hypothesis. Errors in the assumption that all affecteds share a risk allele IBD could 
be modeled via the recombination fraction parameter. An example of this can be 
seen in Figure 5, a recessive pseudomarker locus assignment in an affected sib-pair, 
where the father and mother are forced to be informative for linkage by assigning a 
pseudomarker locus genotype D/+, with affected children receiving genotype D/D.  
 

 
Figure 5. A recessive pseudomarker locus assignment on an affected sib-pair 
pedigree. 
 

It has been shown that performing linkage analysis by using recessive pseudomarker 
locus structure is stochastically equivalent to the traditional affected sib-pair mean 
test on affected sib-pairs (Knapp, Seuchter et al. 1994; Kuokkanen, Sundvall et al. 
1996; Satsangi, Parkes et al. 1996). This recessive assignment is completely 
identical to recessive linkage analysis as in Figure 4. Similarly, applying 
pseudomarker locus assignment on unrelated singletons and various-sized nuclear 
pedigrees, yields likelihood-ratio tests of linkage and/or LD that are stochastically 
equivalent to the classical case-control analyses, the haplotype-based haplotype 
relative risk (HHRR), and the transmission disequilibrium test (TDT). 
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2.5 Detectance 
 

The detectance is the inverse of the penetrance (Figure 6) and is defined as 
 (Weiss 1993). The power of a study depends on both the 

strength of linkage and/or LD between marker and trait loci and how well the 
observed phenotype predicts the underlying unobserved trait locus genotypes: the 
detectance (Weiss and Terwilliger 2000). Technological advances in genotyping and 
sequencing can only influence the strength of linkage and LD, because in a very 
large set of markers over the genome, at least one marker is likely to be in linkage 
and LD with any potential functional variant. However, technology cannot influence 
the detectance, which can be only modified by altering the ascertainment scheme, as 
penetrance is an inherent biological property. The ascertainment of large 
multigenerational pedigrees with multiple affected individuals (who share some trait 
of interest) from small isolated populations increases the predictive value of 
phenotype on risk genotype, because affected family members are more likely to 
share genetic risk factors which have influence on the phenotype.     
 
In Table 2 are listed some simple examples to demonstrate the lack of equivalence 
between detectance of risk genotypes and penetrance in random samples; a) A 
complex multifactorial disease, such as stroke, is likely influenced by multiple 
variants of minimal individual risk (low penetrance) together with environmental 
factors (Dichgans 2007), and therefore may require enormous sample sizes to detect 
any functional variant (low detectance), b) The relationship between sex and 
prostate cancer is a trivial example of a genetic risk factor (sex) which has low 
penetrance (most men do not have prostate cancer) but high detectance (most 
prostate cancer patients are male) (cf. American Cancer Society (2012)), c) Retinitis 
pigmentosa (RP) can be caused by multiple alleles at multiple loci with high 
penetrance, but given a patient with RP, one cannot predict which of the risk 
genotypes at which of the risk loci he carries (low detectance) (cf. (Hartong, Berson 
et al. 2006)), and d) Adult-type hypolactasia in Northern Europe is almost 
exclusively caused by a single genotype of a single SNP such that individuals with 
this risk genotype are all unable to digest lactase (high penetrance), and all 
individuals unable to digest lactase share this same genotype (high detectance) 
(Enattah, Sahi et al. 2002). 
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Table 2. Examples of high/low detectance and high/low penetrance phenotypes.  
Detectance  

Low High 

Low 
a) Rare variants, weak 
effects (common 
multifactorial stroke) 

b) Common variant, very 
weak effect (prostate cancer 
vs sex) 

Penetrance 

High 
c) Multiple rare variants, 
each high effect (Retinitis 
pigmentosa) 

d) Single variant, large effect 
(adult-type hypolactasia)  

 

 
Figure 6. In linkage and association studies one tests for correlations between 
observed marker genotypes and observed trait phenotypes. The power of a 
study is dependent on the detectance, which is the predictive value of the 
observed phenotype on the unobserved disease locus genotype, in addition to 
linkage and/or LD between the disease locus genotypes and marker locus 
genotypes which have been characterized. Figure modified from Terwilliger 
and Göring (Terwilliger and Göring 2000). 
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3 Aims of the study 

The aim of this study were to automate genome-wide linkage and association 
analysis, to develop family-based association software, to evaluate statistical 
properties of commonly used family-based association methods, and to investigate 
the validity of likelihood ratio tests for joint and conditional linkage and LD analysis 
by addressing the following specific aims: 
 
1) To develop software for automating large-scale genome-wide linkage and 

association analysis (I, III). 
 

2) To develop family-based association software for a combined analysis of 
singletons, triads, sib-pairs, larger sibships and multigenerational pedigrees (II). 
 

3) To evaluate statistical properties of commonly used family-based association 
tests in a sample of singletons and related individuals and to compare various 
study designs (II, III). 
 

4) To investigate properties of the likelihood ratio test in joint and conditional 
linkage and LD analysis (IV). 
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4 Materials and methods 

4.1 AUTOGSCAN software (I) 

 
In practice, a large genome-wide scan requires a large amount of file formatting 
when a variety of software packages are used for data analysis. It is typical that each 
software package has their own file formats for describing pedigrees, trait 
phenotypes, marker genotypes, marker allele frequencies, marker maps, disease 
locus parameters, etc. A genome-wide analysis also requires the user to repeat the 
same basic steps multiple times for each chromosome. This process can be 
extremely time-consuming and prone to error. Thus skilled statistical geneticists 
were overloaded by ‘simple’ analysis help requests from students and post-docs, 
even though their expertise would be much more valuable in interpreting the results 
rather than performing the analyses. There was an obvious need for automating 
these processes for researchers. 
 
There exist at least one program tool for automated file formatting and analysis such 
as MEGA2 (Mukhopadhyay, Almasy et al. 2005). MEGA2 is a menu-driven (can be 
run in batch-mode) program which can create input files for more than 30 different 
analysis programs, and allows flexible selection of phenotypes and markers for the 
analysis. Additionally, MEGA2 includes the capability to create graphical plots from 
the analysis results, because most of the statistical software packages create only 
plain text output files. 
 
In Study I, the automation of genome-wide linkage and linkage disequilibrium 
analysis with several widely-used programs was implemented in the AUTOGSCAN 
program. The input files for AUTOGSCAN software are a LINKAGE format 
pedigree file (Lathrop and Lalouel 1984) describing family relationships, gender, 
phenotype, and marker genotypes (each chromosome in a separate file), MEGA2 
format marker map file (Mukhopadhyay, Almasy et al. 2005) describing the 
chromosome, a unique name, and a genomic position for each of the marker loci, a 
phenotype file, a parametric model file, and a control file (for specific analysis 
options). A separate phenotype file allows for easy analysis of multiple phenotypes, 
because most of the programs require phenotype in the pedigree file. 
 
This program contains several scripts and auxiliary programs which automatically 
handle file formatting (including combining pedigree and phenotype files), checking 
for Mendelian inconsistencies with PedCheck (O'Connell and Weeks 1998), 
computing pedigree, phenotype, and marker statistics using PedStats (Wigginton 
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and Abecasis 2005), and estimating of the marker allele frequencies from the data by 
simple counting (if required). After successful file formatting and if Mendelian 
inconsistencies are not found, automatic running of the statistical analyses are 
performed using ANALYZE, GENEHUNTER (Kruglyak, Daly et al. 1996), 
MERLIN (Abecasis, Cherny et al. 2002), or SOLAR (Almasy and Blangero 1998). 
The ANALYZE software package provides qualitative trait two-point analysis; 
parametric linkage analysis, affected sib-pair analysis, and haplotype-based 
haplotype relative risk analysis. Multipoint linkage analysis is performed with 
GENEHUNTER or MERLIN. Quantitative trait linkage analysis (2-point or 
multipoint) is performed with MERLIN or SOLAR.  
 
Each chromosome is analysed under a separate chromosomal subfolder, because this 
allows for simultaneous analysis of all chromosomes, thus avoiding overwriting of 
intermediate files. After all the analyses are completed, summary files are created 
and program-specific output files are copied in the same results folder. Furthermore, 
all converted input files and intermediate files are kept in subfolders for viewing 
detail analysis results or if manual re-analysis is required. For example, SOLAR 
writes computed IBD matrices into files and those can be reloaded (i.e. there is no 
need to compute IBD matrices if the genotype data does not change) when 
additional phenotypes are analyzed. 
  
The main difference between MEGA2 and AUTOGSCAN is that the former is 
focused on providing support for multiple file formats and more flexible analysis 
options, while the latter is focused on completely automated genome-wide scan 
using fixed options with few commonly used software packages. AUTOGSCAN is 
intended for simple first pass analyses, and all assumed options may not be optimal 
for all data sets. However, AUTOGSCAN allows for easy initial genome-wide 
screens with multiple parametric models and multiple phenotypes. AUTOGSCAN 
accepts several command line options, and if multiple models or phenotypes are 
have to be used, this only requires one or two command line options before re-
analysis. The full list of command line options is listed in the AUTOGSCAN 
documentation. More detailed analysis of specific genomic locations typically 
requires manual usage of additional programs which may not be automated by 
AUTOGSCAN. A detailed description of AUTOGSCAN can be found in the 
original publication (I). 
 
Documentation, Unix-shell scripts, C/C++ source codes, and usage examples for 
the AUTOGSCAN can be found at the webpage:  
http://www.helsinki.fi/~tsjuntun/autogscan/index.html. 
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4.2 PSEUDOMARKER software (II) 
 

In study II, a likelihood-based method for joint linkage and/or linkage 
disequilibrium analysis (see Section 2.4.4.9), was implemented in the 
PSEUDOMARKER program. A key feature of the PSEUDOMARKER program is 
that it can combine singletons and pedigrees of varying structure into a single 
unified analysis. Other features are that it estimates a) marker allele frequencies, or b) 
marker allele frequencies conditionally on disease locus alleles, sometimes jointly 
with the recombination fractions when maximizing the likelihood of the data under a 
variety of hypotheses (Table 3). The likelihood calculating engine used by the 
PSEUDOMARKER program is a specially modified version of the ILINK program 
(Lathrop and Lalouel 1984; Lathrop, Lalouel et al. 1984; Lathrop, Lalouel et al. 
1986) from the FASTLINK4.1P package (Cottingham, Idury et al. 1993; Schäffer, 
Gupta et al. 1994). FASTLINK uses the Elston-Stewart-algorithm (Elston and 
Stewart 1971) for traversing pedigrees, and therefore all family relationships are 
used correctly, marriage and consanguinity loops and missing phenotype or 
genotype data can be handled, and theoretically any size pedigree could be analyzed. 
Unrelated individuals are included in the analysis by creating pedigrees in which 
cases and controls are unrelated founders, with offspring of unknown phenotype and 
genotype. 
 
Table 3. Likelihoods. Table modified from Study II. 
Hypothesis Linkage LD Likelihood Estimated parameters 

from the data 

H0 no no  Marker allele frequencies 

H1 yes no  
Marker allele frequencies 
and recombination 
fraction 

H2 no yes  Conditional marker allele 
frequencies 

H3 yes yes  
Conditional marker allele 
frequencies and 
recombination fraction 

 
The modified version of ILINK uses a direct-search optimization method (Torczon 
1991) instead of  the default GEMINI procedure (Lalouel 1979). The major benefit 
of using direct-search over GEMINI is that when estimation is performed over 
multiple dimensions jointly (i.e. conditional allele frequencies and recombination 
fraction jointly), GEMINI can get trapped in a local optimum when some parameter 
values are close to their boundary values. A more detailed description of the 
PSEUDOMARKER program work flow and of the modifications to the ILINK 
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optimization procedure can be found in the original publication (II) and the 
references therein. 
 

4.2.1 Pseudomarker locus assignment with penetrances 
 

A recessive pseudomarker trait locus genotype assignment was shown in Figure 5. 
Equivalently, recessive pseudomarker analysis can be performed by using a rather 
extreme penetrance model: P(D)=0.00001 (or any other very small number), 
P(Affected | D/D)=0.00001, and P(Affected | D/+ or +/+) = 0. The disease locus 
genotypes inferred from this “affecteds-only” model are virtually identical to 
recessive pseudomarker genotype assignment (Terwilliger and Ott 1994; Göring and 
Terwilliger 2000), and we therefore use this approach in general, for simplicity, and 
to avoid inducing errors. 
 

4.2.2 Statistical tests 
 
After likelihoods are maximized under the four different hypotheses from Table 3, it 
is possible to perform several likelihood ratio tests (LRT). In Table 4, all the tests 
which the PSEUDOMARKER program performs are listed along with their 
analogous model-free tests. The linkage statistic (Λ), a test of LD allowing for 
linkage (Ψ), a test of LD assuming the absence of linkage (ϒ), a test of linkage 
allowing for LD (ζ), and a joint test of linkage and LD (Ξ). A more detailed 
discussion of these tests can be found in Göring and Terwilliger (Göring and 
Terwilliger 2000). In general, the test of LD without linkage ϒ, is not particularly 
meaningful in practice. Of particular interest is the statistic Ψ, with which one can 
test for LD in the presence of linkage after a significant linkage signal has been 
found. 
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Table 4. Likelihood test for linkage and/or LD can be performed with 
PSEUDOMARKER software. 

Test statistics Application 
Analogous 

model-free test 

  * Test of linkage 
(without LD) 

Affected sib-pair 
tests, affected 
relative-pair tests 

 
Test of LD 
allowing for 
linkage 

Haplotype 
relative risk 
(HRR) tests, 
case-control tests 

 
Test of LD 
(without 
linkage) 

Haplotype 
independence 
test (HIND) ** 

 
Test of linkage 
allowing for LD 

Transmission/ 
disequilibrium 
tests (TDT) 

*** 
Joint test of 
linkage and LD 

- 

The n is the number of alleles at the marker locus.  

* The linkage statistic  is distributed as 50-50 mixture of a point mass at 0 and , 

because of the one-sided nature of the test (θ cannot be > 0.5). 
** The haplotype independence test (HIND) was discussed by Terwilliger and Ott 
(Terwilliger and Ott 1992). 

*** The joint test statistic Ξ is distributed as a 50-50 mixture of  and , because 

for biological reasons, θ is restricted to be less than 0.5. Since Ξ = Λ + Ψ, this mixture 

distribution approximately applies. 
 

4.2.3 Documentation 
 
A web-based documentation, C/C++ source codes, and usage examples for the 
PSEUDOMARKER can be found at the webpage: 
http://www.helsinki.fi/~tsjuntun/pseudomarker/index.html. 
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4.3 Simulations (III, IV) 
 
There are several recent published studies comparing family-based association 
methods (Howson, Barratt et al. 2005; Millstein, Siegmund et al. 2005; Jonasdottir, 
Humphreys et al. 2007; Nicodemus, Luna et al. 2007; Glaser and Holmans 2009; 
Infante-Rivard, Mirea et al. 2009; Callegaro, Lebrec et al. 2010), but they have 
exclusively focused on TDT-based methods and have not included the generally 
more powerful likelihood-based methods such as those implemented in LAMP, 
MENDEL, or PSEUDOMARKER.  
  
In Study III, we evaluated the statistical properties of the most commonly used 
family-based association tests (see section 2.4.4). A total of 10 programs and 42 
analysis options used in the simulation are enumerated in Table 5. The programs test 
types and relationship structures they can utilize can be found from the original 
publication (II) Tables 1 and 2. The simulation was performed under the following 
conditions: 1) no linkage and no association, 2) linkage and no association, and 3) 
linkage and association.  Genotypes were simulated with (Fast)SLINK (Ott 1989; 
Weeks, Ott et al. 1990), in which the random number generator was modified to use 
three seeds instead of one. In addition, we generated data with the phenogenetic 
evolutionary simulator, ForSim (Lambert, Terwilliger et al. 2008), under an 
oligogenic model with multiple risk alleles per locus having varying effects on the 
phenotype. 
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Table 5. The programs and analysis options used in the simulations. Table 
modified from Study III. 
Program Analysis option(s) used (with program specific 

abbreviations) 
FBAT Robust variance estimator with dominant, recessive and 

additive models 
TRANSMIT One affected individual per nuclear family (one) 

• with robust estimator (one, ro) 
• with bootstrapping (one, bs) 
• without robust estimator or bootstrapping* (one) 

One nuclear family (nonuc) 
• with robust estimator (nonuc, ro) 
• with bootstrapping (nonuc, bs) 
• without robust estimator or bootstrapping* (nonuc) 

Multiple nuclear pedigrees (mf) 
• with robust estimator (mf, ro) 
• with bootstrapping (mf, bs) 
• without robust estimator or bootstrapping* (mf) 

UNPHASED Nelder & Mead’s downhill-simplex method for likelihood 
maximization (-neldermead) 

• plain (no additional options) 
• with missing (missing) 
• with missing and parentrisk (missing,pr) 
• plain with controls (cc) 
• with missing and controls (missing,cc) 
• with missing, parentrisk, and controls (missing,pr,cc) 

GENEHUNTER Transmission/Disequilibrium Test (TDT) 
PLINK  • Transmission/Disequilibrium Test (TDT) 

• TDT, parent of origin analysis (tdt,poo) 
• The parental discordance test (parentdt1) 
• The combined TDT and parental discordance test 

(parentdt2) 
• The sib-tdt (sibtdt) 

QTDT No additional options other than TDT test for the qualitative 
phenotype 

HHRR** Genotype and allele based HHRR  
• Genotype based, theoretical  (GT) 
• Genotype based, randomized (GR) 
• Allele based, theoretical (AT) 
• Allele based, randomized (AR) 

MENDEL Gamete competition (A generalized version of TDT with full 
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pedigrees) 
• Model 1 (gc1), where allele frequencies are fixed to 

some value (In these simulation analysis to obtain 
true generating values) 

• Model 2 (gc2), where allele frequencies are 
estimated from the data internally by MENDEL 

Association given linkage 
• Analysis model MDom* and the marker locus  allele 

frequencies estimated from the data using 
MENDEL’s option 6 model 1 (MDom*,fixed1)*** 

• Analysis model MDom* and the marker locus  allele 
frequencies estimated from the data using 
MENDEL’s option 6 model 2 (MDom*,fixed2) *** 

• Analysis model MRec* and the marker locus  allele 
frequencies estimated from the data using 
MENDEL’s option 6 model 1 (MRec*,fixed1) *** 

• Analysis model MRec* and the marker locus  allele 
frequencies estimated from the data using 
MENDEL’s option 6 model 2 (MRec*,fixed2) *** 

LAMP Dominant, recessive, additive, multiplicative and free. The 
‘maxbits’ was set to 10****. 

PSEUDOMARKER Dominant (MDom) and recessive (MRec). 
* Bootstrapping was done with 100000 samples. 
** We have used the likelihood based HHRR program 
*** Parametric models used were MDom*={P(D)=0.01; P(Aff|D/D)= P(Aff|D/+)=0.01; 
P(Aff|+/+)=0}, and MRec*={ P(D)=0.01; P(Aff|D/D)= 0.01;P(Aff|D/+)=P(Aff|++)=0}. 
NOTE: MENDEL had underflow problems when we used the MDom and MRec models, so 
we had to increase the penetrances and allele frequencies to 0.01. Option 6 model 1 

estimates allele frequencies while preserving pedigree relationships, while model 2 treats 
all individuals as unrelated. 
**** The maxbits option was used to disregard large pedigrees from the analysis, because 
without this limitation it would have taken an average of one week to analyze one 

simulated replicate of our schizophrenia (or migraine) pedigrees. The bit complexity of a 
pedigree, which refers to the depth of the ‘gene-flow-trees’ (Abecasis, Cherny et al. 
2002), is calculated by using the formula 2n-3f, where n is the total number of 
individuals and  f  is the number of founders.  
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4.3.1 Pedigree data 
 

The pedigree structures used in Studies II and III were taken from ongoing 
schizophrenia (Ekelund, Hovatta et al. 2001) and migraine (Wessman, Kallela et al. 
2002; Kaunisto, Tikka et al. 2005) studies from Finland (Table 6).  The phenotype in 
the migraine families was ‘Migraine with Aura’ and in the schizophrenia families 
was DSM-IV diagnosis. All other individuals without ‘Migraine with Aura’ or 
DSM-IV diagnosis were set as unknown. The availability of each individual for 
genotyping was determined based on a sample marker from each study. This 
information was used in simulations to allow for a realistic amount of missing 
genotype data.  The schizophrenia families were mostly nuclear families with 
multiple affected offspring, while the migraine families were mostly 
multigenerational pedigrees with affected individuals across generations. 
 
Table 6. Migraine and schizophrenia pedigree characteristics used in Studies II 
and III. Pedigree statistics were computed with PedStats (Wigginton and 
Abecasis 2005). Table modified from Study III. 

 Migraine Schizophrenia 
Pedigrees 84 438 

Individuals 1099 2535 
Founders 366 914 

Average pedigree size 13.08 (4 to 47) 5.79 (3 to 14) 
2 10 (11.9%) 436 (99.5%) 
3 47 (56.0%) 2 (0.5%) Generations 

4 27 (32.1%) - 
All 398 (36.2%) 918 (36.2%) 

Affected individuals 
Founders 26 (7.1%) 60 (6.6%) 

All 810 (73.3%) 1906 (75.2%) 
Genotyped individuals 

Founders 147 (40.2%) 442 (48.4%) 
Cases 270 - 

Additional singletons 
Controls 884 199 

 

4.3.2 No linkage and no association simulation 
 

In the double null simulation, empirical type-I error rates were estimated for each 
program and analysis option when there was no linkage (θ=0.5) and no association 
(δ=0). The marker locus was assumed to be diallelic, with alleles 1 and 2, with 
minor allele frequency . Empirical null distributions were estimated from 

1,000 replicates of the schizophrenia and migraine datasets. 
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4.3.3 Linkage and no association simulation 
 

Empirical type-I error rates were estimated when there was complete linkage (θ=0) 
and no association (δ=0). In order to simulate with linkage we had to assume a 
model for the trait locus, which in this case was chosen as follows: diallelic trait 
locus, with etiological model MRec (Table 7) in the schizophrenia families and MDom 

(Table 7) in the migraine families, and again a marker with a minor allele frequency 
of 0.1 as above. These extreme models were used to maximize the effects of linkage 
on the test statistics. Empirical null distributions (for tests of LD allowing for 
linkage) were estimated from 1,000 replicates of the schizophrenia and migraine 
dataset. 
 
Table 7. Etiological models MRec and MDom used in type-I error simulations 
(θ=0 and δ=0). 

Penetrance 
Model  

P(Affected|D/D)=fD/D P(Affected|D/+)=fD/+ P(Affected|+/+)=f+/+ 

MRec 0.00001 0.00001 0 0 
MDom 0.00001 0.00001 0.00001 0 
 

4.3.4 Linkage and no association simulation when parental genotypes 
are missing 
 
In addition, the empirical type-I error rates for the tests of LD allowing for linkage 
were estimated as a function of the family size and number of missing genotypes in 
the parents. The pedigree structures in this analysis were: 200 triads (one affected 
child) and 100 sibships (two, three or four affected children). The number of 
sibships were reduced from 200 to 100 to save computational time, because it would 
have taken several months to compute empirical type-I error rates for the evaluated 
programs especially in case of a large sibship with unknown parent genotypes. 
Type-I error rates were estimated when parental genotypes were known, one 
parental genotype unknown, and both parental genotypes unknown. An additional 
200 population controls were included in all simulations. Complete linkage was 
assumed between disease and marker loci (SNP marker with minor allele frequency 
of 0.1). The true generating model was MRec. 

4.3.5 Power simulations 
 

The power was estimated in both schizophrenia and migraine datasets, where 
complete linkage was assumed (θ=0) and where LD and etiological parameters were 
varied. We assumed diallelic disease and marker loci, with alleles (D, +) and (1, 2), 
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respectively. The allele frequencies were  and  

. In the first simulation, the genotype relative risk was varied when there 

was complete linkage and complete LD (D’=1) between disease and marker loci. 
The genotype relative risks are the ratio of the penetrances 
 

  

 
such that  and , where, assuming disease 

prevalence , the penetrance  is determined as follows (assuming HWE) 

 

  

 
In the second simulation, the LD parameter D’ was varied between 0 ≤ D’ ≤ 1, while 
the genotype relative risk was fixed (see below) and complete linkage between the 
disease and marker loci was assumed. The conditional allele frequency was 

varied from 0.1 (D’=0) to 1.0 (D’=1). Then, the conditional allele frequency was 

set to 
 

 
 

 
Haplotype frequencies can be computed from the conditional allele frequencies as 
  

  

  
The corresponding D’ values were computed using the equations in section 2.4.1. 
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4.3.6 Genotype relative risk scan 
 
In the genotype relative risk scan the disease and marker loci were assumed to be in 
complete linkage (θ=0) and in complete LD (D’=1 and r2 = 1) (i.e. the marker is the 
functional variant). The genotype relative risk was varied from 1 to 6 under a 
recessive model in the schizophrenia pedigrees and from 1 to 2 under a dominant 
model in the migraine pedigrees. The rationale for selecting a recessive model for 
schizophrenia and a dominant model for migraine was based on pedigree structures 
and observed phenotypes, which suggested such models of inheritance. 
 

4.3.7 D’ scan 
 
In the D’ scan the disease locus and the marker locus were assumed to be in 
complete linkage (θ=0), while D’ was varied as described above. In the 
schizophrenia dataset the genotype relative risk was fixed to 6 under a recessive 
model and in the migraine dataset it was fixed to 2 under a dominant model.  
 

4.3.8 Complex multifactorial trait simulation with ForSim  
 
ForSim (Lambert, Terwilliger et al. 2008) was used to simulate a complex 
multifactorial trait in an entire population, over an evolutionary timeframe. In the 
simulation there were five chromosomes, each containing three etiological loci, 
where one locus on each chromosome had multiple variants contributing to the 
disease phenotype additively. The population was simulated over 10,000 generations, 
where hundreds of variants emerged by mutation and were subjected to natural 
selection on the resulting phenotype. The disease prevalence in the last generation 
was 9%. This simulation generated 10,000 multigenerational pedigrees and 1,000 
random control individuals with thousands of SNP markers. One functional SNP 
was selected for the analysis, which showed strongest linkage and association in the 
population. The power of each analysis method was estimated using a set of 
randomly sub-sampled pedigrees. A detailed description of the simulation can be 
found in the original publication (III).  
 

4.3.9 Comparison of different ascertainment strategies 
 
In Study III we compared four different ascertainment schemas with fixed sample 
size; 2000 cases and 2000 controls, 1000 triads and 1000 controls, 800 sib pairs and 
800 controls, and 667 sib-trios and 665 controls. Each sample contained a total of 
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4000 individuals. The hypothesis was: complete linkage, complete LD, recessive 
genotype relative risk of 4, disease prevalence of 10%, and . 

PSEUDOMARKER’s recessive LD given linkage test was used to estimate power 
over all sampling schemas.    
 

4.3.10 Additional controls 
 
We investigated the effect of adding population controls to the LD analysis 
conditional on linkage in the schizophrenia and migraine datasets. We assumed 
complete linkage, complete LD, and fixed relative risks as in the D’ scan (See 
Section 4.3.7). The allele frequencies were as described in section 4.3.5. Various 
numbers of population controls were added and the power to detect association 
conditional on linkage was compared.  
 

4.3.11 Parametric linkage analysis under true and inaccurate models 
 
In Study IV we compared the power of parametric linkage analysis under the true 
generating model with Mrec in 800 fully genotyped affected sib pairs (with 
unaffected parents). We assumed complete linkage (θ=0), marker minor allele 
frequency of 10%, disease allele frequency of 10%, and disease prevalence of 5%. 
The same comparison was performed using the schizophrenia dataset, except the 
disease prevalence was 1%.  
 
We computed the expected maximum lod score, , under true model and 

MRec models in both datasets with MLINK (Lathrop and Lalouel 1984; Lathrop, 
Lalouel et al. 1985; Lathrop, Lalouel et al. 1986) program from the FASTLINK 4.1P 
package (Cottingham, Idury et al. 1993; Schäffer, Gupta et al. 1994) for each 
replicate, and the expected maximum lod score was computed as   
 

 

 
where N is number of replicates. Then we compared the expected maximum lod 
scores by using their ratio of , which measures the relative 

gain in the expected lod score statistics, when MRec model is used, compared to the 
true generating model is used. 
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4.3.12 Two-point linkage analysis vs. multipoint linkage analysis 

 
We used ForSim-generated data to compare the power of parametric two-point 
linkage analysis and multipoint linkage analysis when a set of loci were in both 
linkage and LD with a functional variant. The pedigree sample for linkage analysis 
was sampled without replacement from the set of pedigrees we previously simulated 
with ForSim (see above). All individuals were genotyped at all marker loci. We 
selected 11 SNPs from an 89kb region containing functional variants simulated in 
722 individuals from 79 three-generational pedigrees. The functional variant had 
relatively large effect, genotype relative risk of 10. The minor allele frequency of the 
functional variant in the sample was 0.2, and the population prevalence of the 
disease was 0.212. 
 
In addition, we performed a similar comparison using the migraine dataset, in the 
presence of incomplete LD between the functional variant and a marker locus. A 
dominant model for the disease and parameters of the SNP marker were as described 
in Section 4.3.7. We also simulated a highly polymorphic microsatellite marker with 
10 alleles, each having allele frequency of 0.1, at the same genomic location (θ=0) 
with the SNP marker.  
 

4.4 Maximum likelihood estimates of parameters in a test of 
LD conditional on linkage (IV) 

 
In Study IV, we investigated statistical properties of likelihood ratio tests of LD 
conditional on linkage under various true  and analysis  model 

combinations. To examine the maximum likelihood estimates (MLEs) of parameters 
under each model, the BIAS program was written, which computes the expected 
log-likelihood of the data as a function of θ, , , and the true and analysis 

models as follows 
 

  

 
The BIAS program uses a downhill simplex method (Nelder and Mead 1965) for 
maximization of the likelihood.  
 
In order to evaluate the properties of the conditional test of LD given linkage, we 
assumed complete linkage and no LD under some true model with parameters θ=0 
and  (i.e. marker allele frequency of 0.1 and no LD). The true and 

analysis disease models all permutations of the models MRec and MDom from Table 7. 
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The expected profile log-likelihoods were computed in a single sib pair and a single 
sib-trio treating the recombination fraction as a nuisance parameter as 
 

 . 

 
The profile log-likelihoods were computed as a function of  and  , where 

 . 

 
Additionally, we investigated the properties of the MLEs of the parameters under 
the analysis model MDom, when the MTrue models were dominant , 

recessive , additive  and multiplicative 

, assuming the following parameters: , θ=0, and 

. The genotype relative risk, , varied between 1 and 50. 
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5 Results and their evaluation  

5.1 Applications of AUTOGSCAN software (I) 

 
Before AUTOGSCAN was published, it was extensively tested by our research 
scientists at the National Institute of Public Health (KTL), Helsinki, Finland, later, 
the National Institute for Health and Welfare, Helsinki, Finland. Automated analysis 
has enabled efficient data analysis of numerous large genome-wide scans by 
students and researchers themselves. Furthermore, the valuable time of trained 
statistical geneticists can now be used for interpretation of results, rather than 
running repetitive analyses.  
 
For example, an early version of AUTOGSCAN was used by Paunio et al. (Paunio, 
Tuulio-Henriksson et al. 2004), in which SOLAR was used for variance component 
linkage analysis. Since AUTOGSCAN was published it has been used in many 
published genome-wide scans. Automated ANALYZE was utilized in (Al-Yahyaee, 
Al-Gazali et al. 2006; Rehnstrom, Ylisaukko-oja et al. 2006; Ylisaukko-oja, Alarcon 
et al. 2006; Turunen, Rehnstrom et al. 2008; Wider, Melquist et al. 2008; Tikka-
Kleemola, Artto et al. 2010; Polvi, Siren et al. 2012). 
 
Automated MERLIN was utilized in (Sammalisto, Hiekkalinna et al. 2005; Knaapila, 
Keskitalo et al. 2007; Perola, Sammalisto et al. 2007; Magnusson, Boman et al. 2008; 
Wedenoja, Loukola et al. 2008; Kettunen, Perola et al. 2009; Sammalisto, 
Hiekkalinna et al. 2009; Haataja, Karjalainen et al. 2011; Kantojarvi, Kotala et al. 
2011), and both automated ANALYZE and automated MERLIN were utilized in 
(Loukola, Broms et al. 2008; Wessman, Forsblom et al. 2011). 
 
Even though AUTOGSCAN is intended for performing simple quick-and-dirty 
genome-wide analysis, it allows for a flexible selection of subsets of chromosomes 
to be analyzed. This option was applied in a large genome-wide linkage scan by 
Sammalisto et al. (Sammalisto, Hiekkalinna et al. 2005), where the resulting 
analysis was performed in a ‘parallel’ sense, with each chromosome was 
simultaneously analyzed on a separate individual processor to dramatically reduce 
the analysis time. While today, such approaches are in common practice, at that time 
it was novel. In conclusion, AUTOGSCAN has proven to be very useful tool for 
research scientists. 
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5.2 Empirical type I error rates (III) 
 

The empirical type-I error rates were estimated for 0.01 and 0.05 significance levels 
in both schizophrenia and migraine data sets using 1,000 replicates. The selection of 
the -level is in general more or less arbitrary, however estimation of the much 
smaller type-I error rates normally used in gene mapping would have required an 
extremely large number of replicates. Furthermore, in our case, several months of 
computing time would have been needed to evaluate all the programs and options 
we considered. As our goal was to identify analysis methods that were grossly 
invalid, we applied these less-stringent criteria, and already identified several 
program/analysis option combinations which gave grossly anticonservative results, 
obviating the need to explore deeper into the tail of their distributions. The results 
under the hypothesis of no linkage and no association, and for the hypothesis of 
complete linkage and no association are given in the original publication (III) 
Supplementary Tables 2-5. Figure 7 shows the empirical type-I error rates when no 
linkage and no association are assumed and Figure 8 show the empirical type-I error 
rates for the schizophrenia and migraine data sets, when each program’s author’s 
recommended options were used in testing for association in the presence of linkage 
when there is missing parental genotype data. When the program allowed for 
parametric analysis, the simulation model-type was used (recessive or dominant).  
 

5.2.1 No linkage and no association 
 

Under the null hypothesis of no linkage and no association all the programs 
provided valid tests except LAMP (See the original publication (III) Supplementary 
Tables 2-3), which consistently showed significantly inflated type-I error rates 
(Figure 7). LAMP’s analysis models were all anticonservative with the most 
anticonservative option being ‘free’, which had a type-I error rate of 0.17 on 
schizophrenia pedigrees and 0.19 on migraine pedigrees at the 0.05 significance 
level.  
 
LAMP estimates parameters of the etiological model under constraints concerning 
disease prevalence and model type (recessive, dominant, multiplicative, etc.) jointly 
with linkage and LD, and it assumes complete linkage (θ=0) between trait and 
marker loci. This leaves many nonorthogonal nuisance parameters to be estimated 
both under the null (penetrances and allele frequencies of disease and marker loci) 
and alternative (penetrances and haplotype frequencies of disease and marker loci) 
hypotheses. Furthermore, due to the complexity of the parameter constraints, and the 
nonorthogonality of the several parameters being estimated, the regularity conditions 
of Wilks’ theorem do not apply, such that significance testing in LAMP is based on 
a simulated null distribution assuming no association, rather than some approximate 
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mixture of  distributions. The null distribution of the test statistic given complete 

linkage and no association is simulated in LAMP by using the MLEs of the 
parameters under the hypothesis of complete linkage and no association. Then the 
observed test statistic is compared with the simulated null distribution (Li, Boehnke 
et al. 2006). However, these estimated parameters are not the “true state of nature”, 
and estimates of the same parameters under the alternative hypothesis can be 
dramatically different.  For all of these reasons, the anticonservative nature of the 
test statistic in LAMP is not particularly surprising. 
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Figure 7. Empirical error rates from the no linkage no LD simulation, (A) the 
schizophrenia data set, and (B) the migraine data set at 0.05 significance level 
with 95% confidence intervals. The following analysis options were used: 
FBAT [(A) recessive and (B) dominant], PSEUDOMARKER [(A) recessive and 
(B) dominant, LD given linkage), GENEHUNTER (TDT), PLINK (sib-TDT), 
HHRR (AR), MENDEL [(A) MRec*,fixed1, (B) MDom*,fixed1, association given 
linkage), QTDT , TRANSMIT (mf, ro), LAMP [(A) recessive (B) dominant], 
and UNPHASED (missing, pr, cc). The results are based on 1,000 replicates. 
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5.2.2 Complete linkage and no association 
 

Under the null hypothesis of complete linkage and no association, GENEHUNTER 
TDT, PLINK (TDT-based options), MENDEL (gamete competition option) had 
some power to detect linkage, (See the original publication (III) Supplementary 
Tables 4-5), even though there was no association, consistent with the null 
hypothesis of those tests being that of no linkage, not of no association.  
Furthermore, this means that significant test statistics from those methods imply 
nothing about the existence of any association. 
 
In Figure 8 the empirical type-I error rates are presented for programs which allow 
testing for LD in the presence of linkage. The TDT-type methods which claim to test 
for LD in the presence of linkage, such as TRANSMIT (‘robust estimator’-option) 
and UNPHASED (‘parentrisk’-option), showed inflated type-I error rates, both for 
schizophrenia (Figure 8A) and migraine (Figure 8B) data sets, however these error 
rates were somewhat lower on the multigenerational migraine dataset than the 
nuclear family dataset with schizophrenia. UNPHASED had an enormous error rate 
of 0.498 on the schizophrenia dataset (Figure 8A), even when options for missing 
data and inclusion of controls were used, and the presence of linkage was allowed 
for in the analysis, as per the author’s instructions (Dudbridge, personal 
communication). FBAT’s test for LD in the presence of linkage (robust variance 
estimator) and HHRR were valid in all tests, as were the likelihood-based methods 
in PSEUDOMARKER and MENDEL (association given linkage).  
 
Our results confirm the obvious, that it is not suitable to use TDT-based methods 
[GENEHUNTET TDT, PLINK (TDT-based options), MENDEL (gamete 
competition), and some options of TRANSMIT and UNPHASED] for testing the 
null hypothesis of no association in datasets where there are families with multiple 
affected individuals, unless one subsamples a single affected individual and his 
parents and censors the rest.  
 
Type-I error rates were elevated, even when UNPHASED’s (‘parentrisk’-option) 
and TRANSMIT’s (‘robust estimator’-option) options controlling for linkage were 
used. The reason for UNPHASED’s and TRANSMIT’s relatively less anti-
conservative performance in the migraine families are because there were relatively 
more nuclear families with genotyped parents (in large pedigrees), than in the 
schizophrenia dataset, which consisted solely of nuclear families. FBAT was the 
only exception among the set of TDT-type methods we compared, with type-I error 
rates at the expected level, meaning that the correction for linkage implemented in 
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FBAT provides a valid test, as advertised. Perhaps the most interesting result was 
with UNPHASED, when additional controls were added to the analysis. It appears 
that UNPHASED treats affected individuals with two missing parents (phenotypes 
and genotypes unknown) differently from random affected individuals drawn from 
the population in the analysis, even though those are fundamentally identical 
sampling units, because everyone has parents regardless of whether they have been 
genotyped or not. LAMP’s elevated type-I error rates show that estimation of the 
disease model conditional on the disease prevalence and the significance testing 
based on simulated null distributions is not really adequate.  
 
PSEUDOMARKER (LD given linkage) and MENDEL (association given linkage) 
were valid in both simulations and in both datasets, because those methods use all 
available data and can account for linkage in full pedigrees. Although MENDEL had 
lower type-I error rates than expected, it may be a result of how the conditional 
allele frequencies are estimated (i.e. MENDEL adds more constraints on the values 
of the nuisance parameters than PSEUDOMARKER). The HHRR was valid, 
because when there is no LD, “case” and non-transmitted “control” genotypes are 
independent (Terwilliger and Ott 1992). 
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Figure 8. Empirical error rates from the complete linkage no LD simulation, 
(A) the schizophrenia data set, and (B) the migraine data set at 0.05 significance 
level with 95% confidence intervals. The following analysis options (LD tests 
conditional on linkage) were used: FBAT [(A) recessive and (B) dominant], 
PSEUDOMARKER [(A) recessive and (B) dominant, LD given linkage), 
HHRR (AR), MENDEL [(A) MRec*,fixed1, (B) MDom*,fixed1, association given 
linkage), TRANSMIT (mf, ro), LAMP [(A) recessive (B) dominant], and 
UNPHASED (missing, pr, cc). The results are based on 1,000 replicates. 
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5.2.3 Complete linkage and no association: effect of missing parental 
genotypes 
 
In an additional set of simulations of complete linkage and no LD, we considered 
nuclear families (triads, sibships and additional controls), with various proportions 
of missing parental genotypes. In the presence of such missing data, several 
programs for testing LD in the presence of linkage showed excessive type-I error 
rates and some programs could not analyze the data at all when parental genotypes 
were missing (See Supplementary Table 6 of the original publication (III)).  
 
The TDT-type test is a test of linkage which is only powerful in the presence of LD, 
such as GENEHUNTER TDT, MENDEL (gamete competition), TRANSMIT 
(without ‘robust estimator’-option), UNPHASED (without ‘parentrisk’-option), and 
PLINK (TDT-options) did show some power to detect linkage when all individuals 
were genotyped and sibship size was increasing. Furthermore, interestingly, power 
to detect linkage increased as missing data increased (one parent not genotyped and 
both parents not genotyped) for MENDEL (gamete competition), TRANSMIT (one 
affected per nuclear pedigree) and UNPHASED (‘missing’-option and controls), 
indicating potential problems with the algorithms for handling missing data.  
 
TRANSMIT’s and UNPHASED’s options for testing LD in the presence of linkage 
showed highly elevated type-I error rates. For example, in affected sibships with 
both parental genotypes missing TRANSMIT (‘robust estimator’-option), and 
UNPHASED (‘parent risk’-option) had type-I error rates of 100% at the 0.05 
significance level (See Supplementary Table 6 of the original publication (III)). 
FBAT, HHRR, LAMP, and MENDEL (association given linkage) were valid in all 
tests. PSEUDOMARKER’s test “recessive LD given linkage” showed an elevated 
type-I error rate of 0.1 on triads (parental genotypes known). This elevated type-I 
error rate arose from the fact that the null hypothesis likelihood is not a function of 
the recombination fraction while under the alternative hypothesis, it is leading to a 
well-known violation of the regularity conditions of Wilks’ theorem (see (Davies 
1977)). This problem and its solutions are discussed in detail in Section 5.4 below. 
 
When there is no parental genotype information available, there is no data for 
methods like the classic TDT (such as GENEHUNTER TDT and PLINK’s TDT-
options) to analyze. TRANSMIT and UNPHASED overcome the missing genotype 
problem by integrating over all possible complete data configurations consistent 
with the known genotypes, and type-I error-rates from those programs were at 
expected levels when the dataset consisted solely of triads and singletons. MENDEL 
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(gamete competition) was also valid for triad data. However, when there were 
multiple affected offspring and parental genotypes unknown, those tests are no 
longer valid, as shown above in the complete linkage and no association simulations. 
Interestingly LAMP was valid for all tests and the reason might be related to the 
specific relationship structures being analyzed. The main difference between 
sibships and the schizophrenia dataset are that in the schizophrenia dataset we only 
have phenotypic information for definitively affected individuals (36.2%) and all 
others are phenotypically unknown. Additionally, there is a mixture of family 
structures, and a mixed assortment of missing data, where in these analyses the 
entire dataset consisted of independent and identically distributed family structures. 
The LAMP association test (conditional on linkage) was valid when the data is 
‘idealistic’, where all individuals are phenotyped, however that is never the case in 
real-life data sets. 
 

5.3 Power (III) 
 

Only those programs and options that provided valid type-I error rates (at =0.05 
significance level) for tests of LD given linkage were included in the power 
analyses. Therefore classic TDT-based methods GENEHUNTER TDT and PLINK 
(TDT-options) were omitted from further consideration, along with LAMP. Some 
options of TRANSMIT and UNPHASED programs had valid type-I error rates 
under the hypothesis of complete linkage and no association, so those options which 
had the least anticonservative empirical type-I error rates were used in the power 
analyses (See Supplementary Tables 4-6 from the original publication (III)).  
 
In the schizophrenia dataset, TRANSMIT’s option for selecting one triad (one) from 
each pedigree was used (the empirical type-I error rate was 0.057) and 
UNPHASED’s option including controls (plain,cc) (the empirical type-I error rate 
was 0.056) but not the option allowing for missing data was used, because the 
missing data option had an anticonservative type-I error rate of 0.29. In the migraine 
dataset, TRANSMIT’s option for selecting one nuclear family from a pedigree 
(nonuc) using the robust variance estimator (ro) was used (the empirical type-I error 
rate was 0.067) and UNPHASED’s option including controls (plain,cc) without 
allowing for missing data (the empirical type-I error rate was 0.066). Power was 
estimated at the α=0.0001 significance level, because in genome-wide linkage 
analysis, a pointwise significance level of 0.0001 (which correspond to a lod score 
of 3) is approximately equivalent to a genome-wide significance level of 0.05. The 
choice of α–level should be even lower for genome-wide association scans, where 
large numbers of marker are studied. 
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5.3.1 Genotype relative risk and D’ scans 
 

In the genotype relative risk scan using the schizophrenia dataset, 
PSEUDOMARKER was the most powerful followed by FBAT, HHRR, MENDEL 
(association given linkage), TRANSMIT, QTDT, and UNPHASED (Figure 9). In 
the multigenerational migraine dataset (Figure 10), TDT-based tests (UNPHASED, 
TRANSMIT, FBAT, and QTDT) had a striking reduction in power, with FBAT and 
QTDT having almost no power at all. These TDT-based methods are unable to 
utilize multigenerational pedigrees correctly, and in the migraine dataset there are 
fewer informative nuclear families (both parents genotyped) than in the 
schizophrenia dataset. Furthermore, FBAT and QTDT require both parents to be 
genotyped and heterozygous, and those programs do not handle missing data at all. 
The most powerful approach, once again, was PSEUDOMARKER, followed by 
HHRR and MENDEL (association given linkage).  
 

 
 

Figure 9. Power of each program to detect allelic association in the presence of 
linkage at significance level =0.0001 in the schizophrenia dataset, as a function 
of the genotype relative risk. The disease prevalence was 1%, θ=0, pD=0.1, and 
the risk allele itself was genotyped.   The following analysis options were used: 
FBAT (recessive model), PSEUDOMARKER (recessive LD given linkage), 
HHRR (AR), MENDEL (MRec*,fixed1, association given linkage), QTDT, 
TRANSMIT (one), and UNPHASED (plain, cc). The results are based on 1,000 
replicates. The gigure modified from Study III.  
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Figure 10. Power of each program to detect allelic association in the presence of 
linkage at significance level =0.0001 in the migraine dataset, as a function of 
the genotype relative risk. The disease prevalence was 10%, θ=0, pD=0.1, and 
the risk allele itself was genotyped.  The following analysis options were used: 
FBAT (dominant model), PSEUDOMARKER (dominant LD given linkage), 
HHRR (AR), MENDEL (MDom*, fixed1, association given linkage), QTDT, 
TRANSMIT (nonuc,ro), and UNPHASED (plain,cc). The results are based on 
1,000 replicates.  The figure modified from Study III. 
 
In the D’ scan (Figures 11 and 12), a similar trend was observed in relative power 
across programs. HHRR was surprisingly powerful because it can; a) include 
singletons in the analysis, because for example, unaffected healthy control 
individuals provide information about the allele frequencies, and b) use homozygous 
parents (all the data is used for estimating the allele frequencies). Thus, when there 
is complete linkage and complete LD and all individuals in a pedigree are genotyped, 
genotyping an additional affected non-founder individual does not add significant 
new information about association, since under a dominant model the disease allele 
most likely enters each pedigree only once.  Therefore, most of the information can 
be obtained from a single triad, making HHRR surprisingly powerful.  
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There are several reasons why PSEUDOMARKER is the most powerful: a) all 
available data are used, including unrelated cases and controls, b) pedigree 
relationships in families are modelled correctly, c) allele frequencies, conditional 
allele frequencies, and recombination fractions are estimated directly from the data, 
and d) missing genotype data can be integrated over accurately. The tests based on 
TDT were less powerful and possible reasons for that are a) large extended 
pedigrees are decomposed into nuclear families and treated incorrectly as 
independent, b) they cannot adjust properly for missing data or cannot use families 
at all, when parents are missing (such as classic TDT). 
 
 

 
 
Figure 11. Power of each program to detect allelic association in the presence of 
linkage at significance level =0.0001 in the schizophrenia dataset, as a function 
of the strength of LD between marker and disease loci. The disease prevalence 
was 1%, θ=0, recessive genotype relative risk was fixed to 6, and . 

The following analysis options were used: FBAT (recessive model), 
PSEUDOMARKER (recessive LD given linkage), HHRR (allele-based 
randomized), MENDEL (MRec*,fixed1, association given linkage), QTDT, 
TRANSMIT (nonuc,ro), and UNPHASED (plain, cc). The results are based on 
1,000 replicates. Figure modified from the Study III.  
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Figure 12. Power of each program to detect allelic association in the presence of 
linkage at significance level =0.0001 in the migraine dataset, as a function of 
the strength of LD between marker and disease loci.  The disease prevalence 
was 10%, θ=0, dominant genotype relative risk was fixed to 2, 
and . The following analysis options were used: FBAT (dominant 

model), PSEUDOMARKER (dominant LD given linkage), HHRR (AR), 
MENDEL (MDom*, fixed1, association given linkage), QTDT, TRANSMIT (one), 
and UNPHASED (plain,cc). The results are based on 1,000 replicates. The 
figure modified from Study III.  
 

5.3.2 Complex multifactorial trait simulation with ForSim  
 
The power analysis results in the ForSim-generated data (see Section 4.3.8) were 
similar to those from the migraine pedigrees (See Figure 3 from the original 
publication (III)). PSEUDOMARKER was the most powerful followed by HHRR, 
MENDEL (association given linkage), TRANSMIT, FBAT, QTDT, and 
UNPHASED.  
 
This shows that our observations made under a single functional variant model on 
migraine data hold also under more complex models with multiple functional 
variants in multiple genes influencing the trait. It is likely that real-life diseases are 
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caused by multiple functional variants across many different genes with a variety of 
effect sizes. ForSim enabled us to simulate phenotype-based natural selection in an 
entire population over many thousands of generations, in which multiple etiological 
loci with hundreds of functional variants arise by mutation, and were subjected to 
natural selection on the resulting phenotypes in each generation.  In this model, all 
variants were assumed to influence the trait in an additive fashion. Pedigrees for the 
analysis were selected from the last generations of this population-based simulation. 
This is oversimplified, but yet much more realistic than the single functional variant 
models, the fact that the results were essentially the same reassures us that our 
conclusions are generalizable. 
 

5.3.3 Comparison of different sampling schemas 
 
In a comparison of four different ascertainment schemes (case-control, triads, 
affected sib pairs, and affected sib-trios) (see Section 4.3.9) with fixed number of 
genotyped samples, the lowest power per genotype came from the sample of triads 
as expected (Figure 13), because one triad (father, mother and affected offspring, 
total of three genotypes) contributes one “case” genotype (i.e. transmitted) and one 
“cohort” genotype (i.e. non-transmitted) to the analysis. The power of a case-control 
study was higher, because twice as many affected individuals were included in the 
study, with 50% more of the “controls” having been screened for not having the 
disease compared with non-transmitted alleles in the triad design. The change in the 
power from a case-control design to an affected sib pair and to an affected sib-trio 
design was enormous. On average, offspring in a sib pair share 50% of their 
genomes IBD, increasing the chance that they are sharing a phenotype because of 
shared genetic exposures rather than environmental ones (i.e. the detectance at the 
disease locus genotype is increased). With three affected sibs in a single family, the 
detectance is increased even more, as three individuals sharing a rare disease 
phenotype by chance in the same family is very small.  In affected sib-trios, 
therefore, even more genetic risk factors are likely to have been transmitted from 
parents to offspring. The key element behind increased power is this increased 
detectance for the disease locus genotype (D/D). This is discussed in detail in 
Section 5.8 below.  
 
Similar results have been previously reported by Risch and Merikangas (Risch and 
Merikangas 1996), who demonstrated that association mapping in sib pairs requires 
far fewer genotyped individuals than in triads. However, the paper by Risch and 
Merikangas is often misinterpreted as having argued for GWAS in unrelated 
individuals as optimal, while they really pointed out that this was not true and 
furthermore, rather argued that the increased sample size required when not 



Results and their evaluation 

 

THL  –- Research 88/2012 69 
Likelihood-based linkage 

disequilibrium mapping in large 
multiplex families  

 

analyzing multiplex families was not that large, and therefore GWAS might be 
feasible. 
 

 
 
Figure 13.  The power increase when sampling family material. There were 
total of 4000 genotyped individuals; a) 2000 cases and 2000 controls, b) 1000 
triads and 1000 controls, c) 800 sib pairs and 800 controls, and d) 667 sib-trios 
and 665 controls. The generating model parameters were: a recessive genotype 
relative risk of 4, disease prevalence of 10%, disease allele frequency of 10%, 
complete linkage, and complete LD. The test statistic was PSEUDOMARKER 
recessive LD given linkage. The results are based on 1,000 replicates. The 
figure modified from Study III. 
 

5.3.4 Additional controls in family-based association analysis 
 
The increase in power, when adding random population controls to the 
schizophrenia dataset, is shown in Figure 14 (Hiekkalinna et al., unpublished results). 
The test statistic used here was again PSEUDOMARKER recessive LD given 
linkage. When there are missing data, which is always the case in real-life studies, 
genotyping additional random population controls improves the estimates of the 
population frequency of a risk allele in unaffected individuals, and therefore 
increases power.  
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Figure 14. Power in the presence of increasing number of controls as a function 
of the genotype relative risk. The disease was simulated in the schizophrenia 
dataset assuming complete linkage, complete LD, and a recessive mode of 
inheritance with disease allele frequency of 10% and prevalence of the disease 
of 1%. The test statistic used was recessive PSEUDOMARKER LD given 
linkage. The number of controls 199, 438, 876, and 1314 corresponds to a) 
controls available in original study, b) one control per family, c) two controls 
per family, and d) three controls per family, respectively. The results are based 
on 1,000 replicates. 
 
 
One could argue that power was higher when adding controls simply because the 
overall sample size grew.  To address this issue we computed the expectation of the 
LRT statistic, , divided by the number of genotyped individuals in the study to get 
the expected information per genotype. Figure 15 shows that there is an increase in 

 per genotype whenever the genotype relative risk is more than 2. Whether 

one adds one, two, or three controls per family the LRT per genotyped individual 
remains roughly the same in the schizophrenia dataset. This implies that after a 
certain number of additional controls there is no significant further gain in power, 
and that therefore it is not cost effective to genotype too many controls per founder.  
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Figure 15. E[Ψ] per genotype as a function of the genotype relative risk in the 
presence of varying numbers of controls added to the analysis. Family 
relationship structures were taken from the schizophrenia dataset and the 
marker was simulated assuming complete linkage, complete LD, and a 
recessive mode of inheritance with disease allele frequency of 10% and 
prevalence of the disease of 1%. The test statistic used was recessive 
PSEUDOMARKER LD given linkage. The number of controls 199, 438, 876, 
and 1314 corresponds to a) controls available in original study, b) one control 
per family, c) two controls per family, and d) three controls per family, 
respectively. The results are based on 1,000 replicates. 
 
In the migraine dataset, where the disease was dominant and the prevalence was 
much higher (10%), the ratio of  was investigated, which 

measures the relative gain in the expected LRT statistic when adding controls, 
compared to the expected LRT statistic with no controls. Figure 16 shows the degree 
of this increase in  when more controls are added. This 

figure shows that after the genotype relative risk exceeds 1.2, the ratio of the 
expected LRTs plateaus. This means that the ratio of the expected LRTs is 
independent of the genotype relative risk.  
 
Our results show that including unrelated controls to the family-based association 
increases the power for detecting LD. Similar results was obtained by Lasky-Su et al 
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(Lasky-Su, Won et al. 2010). Furthermore, it is important that unrelated controls 
(and cases) are from the same genetic population to avoid population stratification. 
 

 
Figure 16. The ratio of E[Ψ]/ E[Ψ | no controls] as a function of the genotype 
relative risk (fix x-axis label) with varying numbers of controls added to the 
dataset. A marker was simulated in the migraine dataset assuming complete 
linkage, complete LD, and a dominant mode of inheritance with disease allele 
frequency of 10% and prevalence of the disease of 10%. The test statistic used 
was PSEUDOMARKER dominant LD given linkage.  The number of controls 
84, 168, 252, 366, 732, 884, and 1098 corresponds to a) one control per family, b) 
two controls per family, c) three controls per family, d) one control per founder,  
e) two controls per founder, f) controls available in the original study, and g) 
three controls per founder, respectively. The results are based on 1,000 
replicates. 
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5.4 On the validity of the test of association conditional on 
linkage (III) 
 
PSEUDOMARKER’s recessive LD given linkage test showed an elevated type-I 
error rate of 0.1 at the α=0.05 level when the dataset consisted of 200 fully 
genotyped triads and 200 controls, but not in larger families (See Supplementary 
Table 6 in the original publication (III)). This likelihood ratio test  assumes that 
the dataset contains information about the recombination fraction under both null 
and alternative hypothesis (See Table 4). However, the recombination fraction 
parameter does not exist under the null, creating a well-known pathology in the 
distribution of the LRT, as the conditions of Wilks’ theorem are violated (Davies 
1977). When additional affected sib pairs were added to the dataset, type-I error 
rates dropped to the appropriate levels when there as few as 10 informative sib-pairs 
(See Table 2 of the original publication (III)). 
 
Whenever performing likelihood ratio tests with nuisance parameters, it is important 
that the likelihood be a function of those parameters under both null and alternative 
hypotheses.  When testing LD conditional on linkage that means that the likelihood 
should be a function of the recombination fraction in the absence of LD (i.e. under 
the null hypothesis). In practice, this means one should have sufficient numbers of 
informative meioses for the lod score to have a nondegenerate distribution.  
Supplementary Figure 1 from the original study (III) shows that, when there are at 
least 20 informative meioses (10 fully informative sib-pairs), the exact p-value of a 
lod score of 3 is approximately at its asymptotic value of 0.0001.   
 

5.5 Bias in parameters estimates on likelihood-based 
conditional tests (IV) 
 
In order to examine the MLEs of parameters in LD analysis conditional on linkage, 
we computed profile log-likelihoods for all permutations of models MRec and MDom 

as true and analysis models shown in Table 7 (see section 4.3.3). Under the null 
hypothesis of complete linkage but no LD, the profile likelihoods maximize at the 
true parameter values,  (See Figures 1A, 1B and 1C in the original 

publication (IV)) for all combinations of true and analysis models with the single 
exception of when the true model was MRec and the analysis model was MDom. In 
this case, the estimated parameter values were and  (Figure 

17). The bias in the parameter estimates becomes even worse when one or both 
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parental genotypes were unknown (See Figures 2E and 2F in the original publication 
(IV)).   
 

 
Figure 17. The expected profile log-likelihood surface for a single sib pair. True 
etiological model was MRec, while the inaccurate analysis model was MDom. The 
MLEs for conditional allele frequencies were  and   

The figure is modified from Study IV. 
 
When additional control individuals were added to the analysis, the bias in  was 

not removed, even with an infinite number of them. However, the bias in  almost 

vanished when adding controls (See Figure 3 in the original publication (IV)), 
because under these analysis models controls would all be inferred to have two + 
alleles. The bias exists only when the true mode of inheritance is recessive and the 
genotype relative risk is more than 15, and became worse when parental genotypes 
were missing (See Figure 4 in the original publication (IV)). 
 
In order to uncover the source of this bias in the parameter estimates, we computed 
the detectance of the marker genotypes, P(GM|Ph), in both members of an affected 
sib pair under models MDom and MRec. Both parents were assumed to be unaffected, 
complete linkage (θ=0) between diallelic marker and disease loci, marker allele 1 
frequency of 0.1 , and no LD. In Table 8, the detectance is shown for each 

possible marker genotype vector, GM, under both models, where children with 
different genotypes are indicated with shaded rows.   
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Table 8. Detectances for marker (diallelic marker with alleles 1 and 2) genotype 
vectors GM, assuming models MRec and MDom. Shaded rows indicate children 
with different marker genotypes. The table is modified from Study IV. 

GM (Parents) P(GM-Parents) GM (Sibs) P(GM|MRec) P(GM|MDom) 

1/1×1/1 0.0001 1/1-1/1 0.0001 0.0001 

1/1-1/1 0.0018 0.00135 

1/1-1/2 0.00000036 0.0009 

1/1×1/2 0.0036 

1/2-1/2 0.0018 0.00135 

1/1×2/2 0.0162 1/2-1/2 0.0162 0.0162 

1/1-1/1 0.0081 0.00405 

1/1-1/2 0.00000324 0.0081 

1/1-2/2 0.00000000000162 0.000000162 

1/2-1/2 0.0162 0.0081 

1/2-2/2 0.000000324 0.00809998 

1/2×1/2 0.0324 

2/2-2/2 0.0081 0.00405 

1/2-1/2 0.146 0.10935 

1/2-2/2 0.00000292 0.0729027 

1/2×2/2 0.2916 

2/2-2/2 0.146 0.10935 

2/2×2/2 0.6561 2/2-2/2 0.6561 0.6561 

 
In Table 8, the mating type 1/2×2/2 with affected children with genotypes 1/2-2/2 
has a great difference in the detectance. In this mating under model MRec, the 
proportion of families with both affected children having marker genotype 1/2 
would be 50% and both with genotype 2/2 would be 50%. Under model MDom, if the 
parent with genotype 1/2 were carrying the disease allele, both children would have 
genotype 1/2 half of the time and genotype 2/2 the other half of the time. However, 
if the parent with genotype 2/2 were the carrier of the disease allele, then 25% of the 
time both children would have genotype 1/2, 25% of the time both would be 2/2, 
and 50% of the time there would be a 1/2 child and a 2/2 child.  
 
Under analysis model MDom, it is more likely the parent having marker genotype 1/2 
is the carrier of the disease allele than the parent with marker genotype 2/2, because 
it would appear that the sibs share marker allele 1 IBD from that parent in every sib 
pair in the study sample. This creates the illusion of LD between the disease allele 
and marker allele 1. If the segregation were random, and MDom were true, one would 
expect many more 1/2-2/2 sib pairs in the absence of LD. Thus, when analyzing 
recessive data under a dominant model, too many of the 1/2x2/2 matings are inferred 
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to have the disease allele with the 1 allele, creating the false positive evidence of LD 
given linkage. 
 
In real life, the true mode of inheritance is never known. If the dataset consists of 
predominantly nuclear families, one should be wary of applying dominant analysis 
models to test for LD conditional on linkage. The recessive analysis model did not 
suffer from this bias, and is therefore recommend because of its increased robustness 
and generally higher power as well, unless there is a clear evidence of 
intergenerational transmission of disease in multigenerational families. 
 

5.6 Parametric linkage analysis using incorrect model and true 
model (IV) 
 
In order to argue for highly inaccurate analysis models, we compared parametric 
linkage analysis under a very inaccurate etiological model assumption, MRec, with 
the same sort of analysis under the perfectly accurate simulated generating models. 
This comparison showed uniformly higher power when MRec was used for linkage 
analysis, rather than the true etiological model, in sharp contrast to the implications 
of earlier claims by Hodge and Elston (Hodge and Elston 1994; Greenberg, Abreu et 
al. 1998; Abreu, Greenberg et al. 1999), Greenberg et al (Greenberg, Abreu et al. 
1998) and Abreu et al (Abreu, Greenberg et al. 1999). 
 
In Figure 5 of the original publication (IV) the ratio of expected maximum lod 
scores under these models is shown for a dataset consisting of 800 affected sib pairs 
with unaffected parents. The MRec analysis model was always more powerful than 
the true parametric model; especially when the genotype relative risk was small, 
which is the situation presumed to apply in most complex multifactorial trait 
mapping studies. In Figure 18, results from an analogous simulation in the 
schizophrenia dataset are presented (Hiekkalinna et al., unpublished results).  In this 
figure, three curves are graphed, with varying amounts of LD between marker and 
disease loci, D’=0 (no LD), D’=0.5 (intermediate LD), and D’=1 (complete LD). 
The fact that these lines are superimposed and indistinguishable confirms that this 
gain in power from the application of improperly specified analysis models is 
effectively independent of LD between disease and marker loci (Terwilliger 2001).  
 
Two decades ago, when the scientific community began the shift from studying 
Mendelian traits to mapping of loci underlying complex traits, there was a great 
debate whether one should use parametric (“model-based”) or non-parametric 
linkage (“model-free”, i.e. no need to specify penetrance model) analysis methods 
(Hodge and Elston 1994; Kruglyak 1997). One argument favoring model-free 
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methods was that for complex diseases it was impossible to determine the mode of 
inheritance. However, it was soon recognized that there are similarities between 
“model-based” and “model-free” methods (Knapp, Seuchter et al. 1994), such that 
“model-free” analyses are a special case of “model-based” analyses with overly 
deterministic etiological models (i.e. models with high detectance, such as  MRec and 
MDom (Göring and Terwilliger 2000)). Because lod score analysis has the advantage 
of modeling all genetic relationships as they really are, applying these methods tends 
to lead to generally more powerful tests (Davis and Weeks 1997), consistent with 
the predictions of the Neymann-Pearson lemma. As we have demonstrated here, 
linkage analysis using the pseudomarker model is generally more powerful than the 
true correct model when the genotype relative risk is not enormous and the 
relationship structures consist of predominantly nuclear families.                                                     
 

 
Figure 18. The ratio of MRec and true model-based two-point linkage analyses 
under the true etiological model using the Finnish schizophrenia dataset. 
Separate curves are presented as a function of LD between marker and trait 
loci with D’ set to 0, 0.5, and 1. The marker and disease allele frequency was 
10% and disease prevalence was 1%. The results are based on 1,000 replicates. 
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5.7 Two-point vs. multipoint linkage analysis 

 
To show importance of performing two-point linkage analysis in addition to 
multipoint linkage analysis, we compared the power of two-point and multipoint 
linkage analysis in ForSim generated data (see Section 4.3.12) (Hiekkalinna et al., 
unpublished results). Figure 19 shows a graph of the parametric two-point and 
multipoint lod scores and the LD plot among 11 markers from HaploView (Barrett, 
Fry et al. 2005). The lod scores  were computed with MERLIN (Abecasis, Cherny et 
al. 2002) using the option for clustering markers to control for LD among them 
(Abecasis and Wigginton 2005). The etiological model for the functional variant in 
this gene was  and 

The functional variant in this simulation, SNP5, showed a 

maximum two-point lod score of 3.5, while the multipoint lod score was only 1.5 
(solid line). In Table 9, detectances are shown for each SNP in affected and 
unaffected individuals, where SNP5 shows the greatest difference in the detectance 
distributions as well.  
 

0.2Dp = , ( | / or / ) 0.5P Affected D D D + =
( | + / ) 0.05.P Affected + =
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Figure 19. Multipoint and two-point linkage analysis of 11 tightly linked SNPs 
covering an area of ~89k base pairs. The pedigrees for linkage analysis were 
sampled w/o replacement from generated simulated population of 10,000 
pedigrees using ForSim. This analysis sample contained 722 individuals from 
79 pedigrees. All the pedigrees had three generations and individuals were all 
genotyped at all marker loci. The etiological model simulated for SNP5 was 

 and  

 
This is possible, because SNP5 is the functional variant and co-segregates in every 
meiosis and is uninformative for linkage in meioses where it is not segregating. 
Other SNPs co-segregate with this locus when both are heterozygous for the same 
meioses, but segregate randomly to the offspring independent of affection status for 
all meioses in which SNP5 was homozygous and the SNP being analyzed was 
heterozygous. Because multipoint lod scores look at allele-sharing among affected 
offspring in all meioses, not just the ones in which the risk allele is actually 
segregating, multipoint lod scores tend to be smaller than two-point lod scores with 
either the functional variant itself or markers in high LD with it. Essentially, the 

( | / or / ) 0.5P Affected D D D + =  , ( | + / ) 0.05P Affected + =
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flanking SNP markers are just adding noise to the analysis (Terwilliger and Göring 
2000).  
 
Table 9. The detectances for affecteds and unaffecteds for each SNP on ForSim 
simulated data.  

Affected Unaffected 
Marker 

1/1 1/2 2/2 1/1 1/2 2/2 
SNP1 0.889 0.106 0.005 0.842 0.154 0.004 
SNP2 0.000 0.134 0.866 0.004 0.162 0.834 
SNP3 0.014 0.111 0.875 0.006 0.209 0.785 
SNP4 0.380 0.546 0.074 0.279 0.455 0.267 
SNP5 0.181 0.787 0.032 0.731 0.253 0.016 
SNP6 0.005 0.171 0.824 0.008 0.231 0.761 
SNP7 0.824 0.171 0.005 0.747 0.245 0.008 
SNP8 0.815 0.181 0.005 0.737 0.255 0.008 
SNP9 0.005 0.171 0.824 0.008 0.245 0.747 

SNP10 0.005 0.171 0.824 0.008 0.245 0.747 
SNP11 0.028 0.287 0.685 0.045 0.352 0.603 

 

 
In Figure 20 the ratio of the expected maximum lod scores (computed as in Section 
4.3.11) of two-point linkage analysis and multipoint linkage analysis in migraine 
dataset is graphed as a function of the strength of LD between the disease locus and 
SNP marker. The ratio of lod scores are shown for three genotype relative risks; 4, 7, 
and 10, to demonstrate that the general gain in power of two-point linkage analysis 
over multipoint is virtually independent of the true mode of inheritance. Two-point 
and multipoint lod scores are almost identical when D’=0.5 (intermediate LD) and 
when D’=1, two-point linkage is over three-times more powerful than multipoint 
linkage.  
 
When using GWAS chips with hundreds of thousands of SNPs in families, it is 
likely that one of the SNPs would be in LD to some degree with any putative 
functional variant. Therefore is would be wise to perform simple and fast two-point 
linkage analysis in addition to multipoint analysis, because one could easily miss 
true positives. However, with two point analysis there are many more independent 
tests, and multiple test corrections would need to be applied (Bonferroni 1935).  
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Figure 20. The ratio of expected two-point lod score to expected multipoint lod 
scores using the migraine dataset. The disease model was dominant, where  

,  and  The analysis model was MRom. Power of two-point 

linkage analysis (assuming no LD in the analysis) increases when D’ between 
the disease locus and SNP marker is higher. Curves are shown for genotype 
relative risks of 4, 7, and 10. In two-point linkage analysis, the SNP marker 
minor allele frequency was 10%. The results are based on 1,000 replicates. 
 

5.8 Ascertainment bias and detectance 
 

In order to emphasize the benefits of ascertainment bias in linkage and linkage 
disequilibrium analysis, detectances, , for the risk locus 

genotype (D/D) were computed for cases and controls, and probands from triads 
(affected child with unaffected parents), sib pairs (two affected offspring with 
unaffected parents), and sib-trios (three affected offspring with unaffected parents) 
using our DETECTANCE software (Hiekkalinna et al., unpublished results). In 
Figure 21 detectances are shown for an affected child randomly chosen from each 
sampling unit as a function of genotype relative risk, where the highest detectance is 
for the proband in an affected sib-trio, followed by (in order) sib-pair, case, affected 
child in triad, non-transmitted genotype in triad, and control. A similar pattern was 
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shown in Figure 13, where the power to detect LD given linkage was compared in 
these same relationship structures. 

 

 
Figure 21. The detectance of disease locus genotype D/D for a proband selected 
under various study designs. The disease model was recessive with disease allele 
frequency of 10% and disease prevalence of 10%.   
 
The control (screened for the phenotype) has the lowest detectance for genotype 
D/D. This is as expected, because under the recessive disease model, controls are 
most likely to have genotypes D/+ or +/+. The non-transmitted alleles in a triad had 
higher detectance to have genotype D/D than the controls, because essentially non-
transmitted genotypes are random genotypes from the population (not screened for 
disease), as discussed in Section 2.4.3. The transmitted genotype in a triad had lower 
detectance than random cases, because we assumed parents in the triad were 
unaffected (if they were unknown it should be identical to random cases, of course). 
There is huge difference in the detectance between a case (from the population) and 
a case chosen from an affected sibship. Affected individuals in a sibship are more 
likely to share the disease for genetic reasons and thus share alleles, leading to 
higher detectance than for a random case from the population. The detectance is 
even higher in an affected sib-trio, because adding more affected relatives increases 
the probability that there are more risk alleles segregating in that family. From this 
result is clear to see that in general sampling families with multiple affected 
individuals increases the detectance of the underlying disease locus genotypes, and 
therefore increases the power of any study to detect linkage and LD. 
 



 

THL  –- Research 88/2012 83 
Likelihood-based linkage 

disequilibrium mapping in large 
multiplex families  

 

6 General discussion 

6.1 Monogenic trait mapping 
 

Human geneticists have been quite successful in their search for the genetic 
determinants of monogenic traits in humans. For example, as of March 16, 2012, 
Online Mendelian Inheritance in Man (OMIM) reported a total of 21,134 entries, 
covering 3,441 monogenic traits with phenotype descriptions for which the 
molecular basis is known (Online Mendelian Inheritance in Man, OMIM®). The 
identification of the allelic variation underlying these phenotypes has been possible, 
because such traits run in families, due to highly-penetrant functional alleles. The 
latest data (February 10, 2012) from the Human Gene Mutation Database (HGMD) 
public release (Stenson, Ball et al. 2009), where one of the requirements is “Novel 
appearance and subsequent co-segregation of the lesion and disease phenotype 
through the family pedigree” (among other firm criteria), indicates that a total of 
85,840 functional variants from 3,253 genes have been firmly associated with some 
clinical phenotype. The number of genes listed in HGMD is smaller, one of the 
reasons being that they do not include somatic mutations and mutations in the 
mitochondrial genome.  
 

6.2 Complex trait mapping 
 
A complex trait is by definition, complex, where the phenotype is a result of 
multiple factors, such as genetic factors (typically alleles of individually small effect 
at a large number of independent loci), environmental factors, and cultural factors. 
After years of successful identification of alleles of individually large effect (often 
themselves being sufficient to cause some disease outright), researchers began to 
shift their focus to more common multifactorial conditions, such as cardiovascular 
disease, and mental illnesses. For example, cardiovascular disease alone is a 
significant cause of premature death (WHO 2011)  and treatment of chronic diseases 
uses a very large proportion of the available health care resources. Therefore, there 
was a great public health interest in the search for genetic risk factors related to such 
diseases. However, the search for genetic determinants for complex diseases with 
small effects seems to require enormous sample sizes and therefore ascertainment 
was focused on a large number of smaller family structures or large population-
based samples, many of which were already collected and available. 
 



General discussion 

 

THL  –- Research 88/2012 84 
Likelihood-based linkage 

disequilibrium mapping in large 
multiplex families  

 

Complex trait mapping has been boosted by technological advances in the last two 
decades.  The first draft of the human genome was sequenced in 2001 (Lander, 
Linton et al. 2001; Venter, Adams et al. 2001; International Human Genome 
Sequencing Consortium 2004), followed by the International HapMap Project, 
which developed a dense genome-wide map of SNPs (The International HapMap 
Consortium 2003). Methods for rapid analysis of such SNPs has been developed 
(Purcell, Neale et al. 2007; Kang, Sul et al. 2010; Yang, Lee et al. 2011) and it is 
likely that within a decade even complete genome sequence data will become 
available at affordable costs for all individuals in any study sample. At the moment, 
GWAS is routinely done with roughly 1,000,000 genotyped SNPs. 
 
In Figure 22 shows a cumulative graph of the number of identified highly-penetrant 
causal variants related to monogenic diseases (HGDM, http://www.hgmd.org) (Stenson, 
Ball et al. 2009) and the number of loci (reported SNP associations, rather than actual 
functional variants) which have been correlated to the multifactorial traits through 
GWAS (A Catalog of GWAS studies, http://www.genome.gov/gwastudies). 
Significantly, while the functional variants in monogenic disease are themselves 
causative of some disorder, the GWAS loci may not be themselves functional and 
typically do not even identify which specific gene harbors the putative functional 
effect. The GWAS data obtained from the aforementioned website was filtered to 
include only genotyped SNPs associated to some phenotype with a p-value < 5×10-8, 
such that the number of SNPs (over all phenotypes, disease and otherwise) which 
met this criteria was 1749. The total number of SNPs in the GWAS Catalog was 
5864, most of which did not meet the required significance threshold. This graph 
shows that identification of Mendelian functional variants has been remarkably more 
successful than GWAS. 
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Figure 22. A cumulative number of published Mendelian functional mutations 
(The Human Gene Mutation Database, public release) and reported GWAS loci 
(A Catalog of published GWAS studies, http://www.genome.gov/gwastudies) 
between 1980 and 2011. The GWAS data was filtered and contains only 
genotyped SNPs with p-values < 5×10-8. The data was obtained from the web 
sites on February 10, 2012. 
 

6.3 Singletons 
 
In the last few years, large population based studies have dominated the mapping of 
complex traits. These initial GWAS pursuits were motivated by the common-
variant/common-disease hypothesis (Risch and Merikangas 1996), under which 
common variants of high attributable fraction were assumed to play the major role in 
the etiology of common diseases such as heart disease, diabetes, or obesity. 
Epidemiologists have for a long time pursued cross-sectional studies of large 
numbers of unrelated individuals, often saving blood samples for future analysis. 
For this reason, it was quick and easy to apply biotechnological advances to these 
readily available samples of deeply-phenotyped cohorts. International collaboration 
has enabled large consortium studies, for example of blood pressure and 
cardiovascular risk factors containing hundreds of thousands of individuals (Ehret, 
Munroe et al. 2011). However, if identification of a risk variant for any given trait 
requires such enormous sample sizes, it is doubtful that such variants could possibly 
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have clinical relevance or significant public health impact (Weiss and Terwilliger 
2000). 
 
As shown in this study, case-control sampling is not very powerful for finding such 
risk variants, because the detectance is low compared to sampling of related 
individuals in families, which are more likely to share causal risk factors. Cross-
sectional studies can be useful for estimating the prevalence of a disease, and for 
estimation of the actual effect size of known risk factors. Repeated longitudinal 
follow-up studies in these large surveys, such as the Finnish FINRISK study for 
cardiovascular risk factors (Vartiainen, Jousilahti et al. 2000), may provide useful 
information about health changes in the population. 
 

6.4 Triads 
 

The use of triads (affected offspring and parents) was proposed to avoid false-
positive results due to population stratification (Rubinstein, Walker et al. 1981). 
Methods to analyze triad data are simple to implement, which led to rapid 
development of multiple program packages implementing variations on the HRR 
and TDT. Another attractive feature of such computational simplicity is that analysis 
of large amounts of data is very fast, because such methods only count transmitted 
and non-transmitted alleles. 
 
Our results confirmed earlier findings that the triad-based design is the least 
powerful design for testing allelic association, because it is required to genotype 
three individuals to get one “case” genotype and one “control” genotype 
(constructed from non-transmitted alleles). Therefore, 50% more genotyping is 
needed for the same information as a case-control study. Furthermore, non-
transmitted genotypes are essentially random genotypes from the population not 
screened for the disease (Ahsan, Hodge et al. 2002), rather than phenotypically 
healthy controls, making it more analogous to a less-powerful case-cohort design 
rather than case-control. This result is consistent with earlier reports (Terwilliger and 
Ott 1992; Risch and Merikangas 1996).  
 

6.5 Sibships 
 

It is surprising how often professional human genetic researchers erroneously 
believe that association analysis cannot be performed in families. Historically 
speaking, one or two decades ago, association analysis was done in many studies, 
when it was common to do large genome-wide linkage analysis on sets of families 
and then after significant results were found, follow-up studies were done to screen 
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for LD in the area of significant linkage, using the same family material. Although 
for a long time software tools have been available for joint linkage and LD analysis 
in large pedigrees, they were either very hard to use or required extensive computing 
resources to run, which were not often accessible to biologists. 
 
We have shown that association analysis in affected sib pairs (or sibships) is more 
powerful than in singletons or triads, consistent with the well-known results of 
previous decades (Risch and Merikangas 1996; Göring and Terwilliger 2000; 
Terwilliger and Göring 2000). This is obvious, because sampling affected relatives 
enriches the sample for the genetic portion of the “multifactorial” etiology. 
Furthermore, affected relatives are likely to share the same risk alleles, and families 
with more affected relatives are more likely to be segregating more genetic risk 
factors. The use of affected sib pairs or larger families likewise allows for the 
analysis of linkage as well as linkage disequilibrium as we have shown, meaning 
that there are more analysis options when pedigrees are collected. 
 

6.6 Complex pedigrees 
 
Multigenerational families have been used for localization and identification of a 
large number of highly penetrant risk factors for inherited diseases using linkage and 
LD analysis strategies for the past several decades. Many attempts were made to 
pursue the same strategy for complex traits as well, with limited success. This 
paucity of results resulted because the sample size requirements are much larger 
than people expected, because they grossly overestimated the marginal effect size of 
the genetic risk factors underlying such traits, when the effect sizes of the inherited 
risk factors are small. One recent example of a successful joint linkage and LD 
analysis in a set of complex pedigrees was the identification of the variant 
responsible for adult-type hypolactasia in Northern Europeans (Enattah, Sahi et al. 
2002). In that study, LD analysis conditional on linkage was used to pinpoint the 
genomic region associated with lactase non-persistence. Although multigenerational 
pedigrees are difficult to ascertain, they can be the most informative sampling units 
in the search for functional variants which have an effect on some phenotype.  
 

6.7 Joint analysis of singletons and families 
 
We have shown the benefits of joint analysis of singletons, triads, sib pairs, larger 
sibships, and multigenerational families using full likelihood-based methods. Sib 
pairs (and larger sibships) and multigenerational pedigrees provide information 
about linkage, while singletons provide important information about the allele 
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frequencies. This is essential, because it is quite common to have missing genotype 
information in families, especially in families with multiple generations. As we have 
shown, adding controls to the analysis leads to more powerful and more accurate 
results. It is important to note that joint linkage and LD analysis requires much more 
computing time than traditional linkage analysis or simple family-based association 
analysis approaches. When millions of SNP markers are genotyped, it is prudent to 
first perform simple and fast two-point linkage analysis, and LD analysis with the 
computationally trivial HHRR for all markers (this statistic is recommended based 
on its performance in our simulation studies compared with the other 
computationally simple alternatives). If some region shows evidence of linkage and 
LD with some markers in this initial scan, then a full joint linkage and LD analysis 
should be performed with PSEUDOMARKER.  
  
The renaissance of family-based studies is at our doorstep, especially in Finland, 
where we have computerized population registers of the pedigree relationships 
among all individuals. GWAS on cross sectional data has not been as successful as 
predicted (Reich and Lander 2001) and researchers are starting to re-think family-
based strategies again. However, only a small percentage of people who work in 
genetic epidemiology today have had any experience or training in the concepts and 
practice of linkage analysis. This creates a great demand for automated easy to use 
linkage and LD analysis packages like our own. 
 

6.8 Study design  
 

We have shown that association mapping based on samples from large multiplex 
families is significantly more powerful than studies based on cross-sectional data. 
Ascertaining families with multiple affected individuals increases the probability 
(the detectance) that affected individuals are affected because of shared genetic 
factors (as opposed to environmental factors). 
 
The phenotype (qualitative or quantitative) is critical for any given mapping study, 
because it is essential to have a well characterized biological phenotype that has a 
strong correlation with some underlying trait locus genotypes (i.e. with high 
detectance). If the phenotype is poorly defined or is biologically too complex and 
multifactorial, there is little hope of finding any important functional variants. The 
success of a gene mapping study is also dependent of other factors shown in Figure 
23, where good quality sequencing and genotyping is important in addition to 
powerful analysis methods. 
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In human genetics we cannot do experiments like we can with yeast and mice, nor 
do we have extremely complex and large families like in the canine breeding 
pedigrees used in gene mapping, and therefore we must always look for natural 
experiments in the human population.  For example, we may look for isolated sub-
populations or families harboring unusual and interesting phenotypes. The Finnish 
population is an example of such a natural experiment which was extremely useful 
for identifying the causes of many rare monogenic diseases, because of Finland’s 
isolation in northern Europe, small founder population size, minimal immigration 
and rapid population growth (Norio, Nevanlinna et al. 1973; Peltonen, Jalanko et al. 
1999). However, for complex common traits, these advantages may be largely 
attenuated because of the complexity of the etiology and high frequency of such 
phenotypes even in Finland. Therefore, one might need to seek out other sorts of 
natural experiments when dealing with less rare and less deterministic conditions. 
For example, populations where first-cousin marriages are the rule rather than the 
exception could prove interesting. 
 

 
Figure 23. An oversimplified flow chart of a gene mapping study. (A) Study 
design, clinical phenotyping and sample collection, where ascertainment of 
multiplex families is preferred. (B) Genome sequencing and/or genotyping of 
the sample. (C) Joint linkage and/or LD analysis of families and unrelated 
individuals. This study was focused on developing tools for easy and powerful 
linkage and/or LD analysis of the data, but if the study is poorly designed, the 
phenotype is poorly defined or sequencing and genotyping quality is low, there 
is no linkage or association method which can rescue the study. 
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6.9 Future prospects 
 

The technological advances of the last few decades have made it possible to look at 
the complete sequence of the human genome. However, it is not current practice to 
sequence every sampled individual in a study, but it is likely to become the reality in 
the near future, as a by-product of screening for the tens of thousands of highly 
penetrant risk factors known to be related to monogenic diseases. This would mean 
that each individual would have almost over three billion data points (i.e. base 
pairs). This will be a nightmare for IT-professionals and data managers handling 
servers and databases, because the amount of genetic data that sequencing will 
produce is astronomical (although it will not compete with the data created by 
CERN’s Large Hadron Collider in the search for the Higgs boson!). Besides that, 
this large amount of data points means one will face the curse of dimensionality in 
statistical hypothesis testing; testing of over three billion sites would require 
ridiculously small p-values to compensate for multiple testing. Furthermore, when 
family registers are linked with the sequence data, the computational burden will 
become enormous. 
 
In the end, because of the curse of dimensionality, it is not unlikely that we will be 
back to classical positional cloning, where investigators will start by selecting a 
sparse map of markers for linkage analysis, followed by a slightly more dense 
HapMap style set of markers for GWAS, with interesting regions followed up by 
joint linkage and LD analysis and sequence comparisons. The advantage of cheap 
and affordable sequencing, especially when it is being performed for health-
screening purposes, is that the time and cost of obtaining this molecular information 
will no longer be a factor in the selection of experimental designs. The era when 
“...study designs for gene mapping be compared under the assumption that we have 
the complete sequence of the entire genome of every samples individual, as a means 
of focusing the discussion on the more relevant issue of whether or not there are 
detectable genetic risk factors in a given data set under the best of circumstances.” 
(Terwilliger and Göring 2000) may be upon us sooner than we think. 
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7 Conclusions 

This study would not have been possible without extensive national and 
international collaboration between physicians, geneticists, statistical geneticists, 
evolutionary biologists, and last but not least, computer scientists. Experts from 
different fields of specialization are crucial for any successful study. 
 
It seems to be that the era of large GWAS studies population-based samples for 
common diseases is coming to an end as we have seen in the past few years. It is 
reality that family-based studies are coming back from the geneticist’s “dusty 
drawers”, although they were never completely forgotten. 
 
To this end, we should start to prepare our analysis methods, biotechnology centers, 
and IT-infrastructure for the full genomic sequence of thousands or even millions of 
individuals. It is likely that in ten or twenty years, when sequencing technology is 
affordable and accurate, all individuals in a population will be sequenced by default.  
 
This would be a highly valuable resource for the researchers in the future when 
individuals and their relatives could be just directly obtained from databases based 
on some clinical information. However, even with complete sequence data, we 
should still begin our gene hunting quest with classical positional cloning. 
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